
Effects of induced latency on performance and

perception in video games

Timo Hoth

February 26, 2022
Version: 1.0.1

Changelog after submission:

• added copyright info

• removed student number

• removed declaration of academic integrity as that was only necessary for
submission

• repositioned and resized most graphs for aesthetic reasons

• description of figure 5.3 now specifies that the graphic shows a histogram

Westfälische Wilhelms-Universität Münster

Fachbereich Mathematik und Informatik
Institut für Informatik

Master of Science Thesis

Effects of induced latency on performance and
perception in video games

Auswirkungen von Latenz auf Leistung und Wahrnehmung in Videospielen

Timo Hoth
-

1. Reviewer Prof. Dr.-Ing Lars Linsen
Institut für Informatik
Westfälische Wilhelms-Universität Münster

2. Reviewer Dr. rer. nat. Dimitar Valkov
Institut für Informatik
Universität des Saarlandes

Supervisor Dr. rer. nat. Dimitar Valkov

November 8, 2021

Timo Hoth (-)

Effects of induced latency on performance and perception in video games

Master of Science Thesis, November 8, 2021

Reviewers: Prof. Dr.-Ing Lars Linsen and Dr. rer. nat. Dimitar Valkov

Supervisor: Dr. rer. nat. Dimitar Valkov

Westfälische Wilhelms-Universität Münster

Institut für Informatik

Fachbereich Mathematik und Informatik

Einsteinstraße 62

48149 Münster

© 2021 Timo Hoth

Abstract

Local end-to-end latency has been shown to reduce performance in human–computer
interactions. I further investigated this relationship in an online study with over
600 participants, using the car soccer video game Rocket League. The game poses
fundamentally different challenges compared to the aiming in first-person shooter
games that have received the majority of research focus in the past. The goal of
the study was to determine the performance loss due to added latency, as well as
how players perceive latency in the game. I also examined factors that influence the
effects of latency such as the level of skill of players, their peripheral vision, and the
graphical effect density. On a task where players have to shoot with precision and
power, latencies of 33 ms and above result in a significant loss in performance. The
effect size is greater for the higher skilled players. The graphics and peripheral vision
variables showed no interaction with latency. Additional latency of 8 ms caused a
significant increase of the perceived latency for the participants as a group. The
individual JND of participants that are at the 99.5th percentile of skill is 28 ms. The
JND of players of average skill is above 50 ms, which is the highest latency condition
in the experiment. Unfamiliar graphics settings result in a small constant increase of
perceived latency with all levels of latency. The peripheral vision does not change
perceived latency.

Zusammenfassung

Wissenschaftliche Studien zeigen, lokale Latenzen führen zu einem Leistungsverlust
in Videospielen. Ich habe dieser Verbindung weiter nachgeforscht in einer Online-
Studie mit über 600 Teilnehmern, durchgeführt in dem Autofußball-Spiel Rocket
League. Das Spiel stellt eine grundlegend andere Herausforderung dar als das Zielen
auf Gegner in Shooter-Spielen, welche bisher die größte Forschungsaufmerksamkeit
erhalten haben. Das Ziel der Studie war es zum einen den Leistungsverlust der
Spieler durch hinzugefügte Latenz zu bestimmen und zum anderen zu testen, wie
genau die Spieler Latenz wahrnehmen können. Außerdem habe ich zusätzliche

v

Faktoren untersucht, bei denen ich eine Interaktion mit Latenz vermutet hatte. Die
Faktoren sind: das Können der Spieler, die unterschiedlichen Grafikeinstellungen
und das periphere Sehen. Die Teilnehmer hatten die Aufgabe den Ball mit möglichst
hoher Präzision und viel Kraft zu schießen. Bei einer Latenz von 33 ms oder mehr ist
die Leistung im Durchschnitt signifikant schlechter. Bei den besseren Teilnehmern ist
die Effektstärke von Latenz größer. Es gibt keine signifikante Interaktion zwischen
Latenz und Grafik oder dem peripheren Sehen. Die Teilnehmer demonstrieren als
Gruppe die Fähigkeit, die Minimallatenz von 8 ms signifikant von der Basiskondition
zu unterscheiden. Die differentielle Wahrnehmbarkeitsschwelle der 0.5 % besten
Spieler beträgt 28 ms. Die Schwelle eines durchschnittlichen Spielers liegt dagegen
über 50 ms. Dies war der maximal getestete Wert in der Studie. In den Abschnitten,
in denen die Teilnehmer mit Grafikeinstellungen gespielt haben, an die sie nicht
gewöhnt sind, haben sie geringfügig mehr Latenz wahrgenommen. Das periphere
Sehen hat als Faktor keinen signifikanten Unterschied hervorgerufen.

Acknowledgement

First and foremost my thanks are towards Prof. Dr.-Ing Lars Linsen for giving me
the ability to work on a topic that I am personally interested in. I owe my greatest
thanks to my supervisor Dr. rer. nat. Dimitar Valkov for answering my questions
and teaching me about the aspects of scientific work that I was unfamiliar with.
I want to express my deepest appreciation for my girlfriend Deep for being there
for me every single day to lift my spirits, motivate me, help my confidence, and
proofread my thesis. A shoutout to all the 763 anonymous participants of the
experiment, who gave their time to science and me, without a personal reward. An
additional thanks to everyone that tested beta versions of the experiment to help
make the experiment run smoothly. I extend my gratitude to Psyonix for creating
Rocket League and allowing players to run local mods, which was a necessity for the
experiment. Furthermore, I am very grateful of Chris Mulder for creating BakkesMod
and answering my mod related questions, without which the experiment would
not have been feasible. I’d also like acknowledge Mark Rejhon of Blur Busters for
improving my understanding of monitors, which helped me significantly with the
identification process of the monitors in the experiment. Lastly, I want to thank my
parents and grandfather for always supporting me on my university endeavors.

vii

Contents

Introduction 1

Thesis Structure . 2

1 Foundations 5

1.1 Rocket League . 5

1.2 Latency definition . 6

1.3 Game mechanics . 7

1.4 Latency in gaming . 8

1.5 Control order . 9

2 Related work 11

2.1 Measuring latency . 11

2.2 Perception of latency . 12

2.3 Performance and behavior changes due to latency 15

3 Experiment methodology 19

3.1 Research questions . 19

3.2 Why was Rocket League chosen? . 20

3.3 Participants . 22

3.4 Experiment setup . 22

4 Implementation details 27

4.1 Measuring and estimating latency in Rocket League 27

4.1.1 Understanding the sources of latency 27

4.1.1.1 Input device . 28

4.1.1.2 Display . 33

4.1.1.3 Computer . 37

4.1.2 Measuring Rocket League latency 41

4.1.3 Estimating game latency . 43

4.1.4 Estimating input device latency 44

4.1.5 Estimating display input latency 45

4.1.6 Total latency estimation . 47

ix

4.2 Experiment implementation . 48
4.2.1 Adding artificial latency . 48
4.2.2 Score evaluation . 49
4.2.3 Miscellaneous . 51

5 Results 53
5.1 Participants . 54
5.2 Effects on performance . 56
5.3 Effects on perception . 62

5.3.1 Just-noticeable difference . 64
5.4 Observational results . 65

6 Discussion 67
6.1 Participants . 67
6.2 Player performance . 67
6.3 Latency perception . 71
6.4 Observational results . 74
6.5 Recommendations . 76

7 Conclusion and future work 79

Bibliography 81
Web pages . 91
Games . 93

Abbreviations 95

Glossary 97

List of Figures 99

List of Tables 101

List of Listings 103

A Experiment setup Appendix 105
A.1 Detailed shot description . 105

x

Introduction

Gaming, with esports in specific, has been a growing market over the past years
[WWW1]. The amount of related research has also been increasing at a rapid pace [1,
2]. Entire workshops and journals have recently been created to further the scientific
understanding of esports [3, 4]. One of the topics of analysis has been latency1.
Research has shown that it impacts player performance in games (see section 1.4).
This means low latency is especially crucial in esports, as any disadvantage could cost
players the win and attached prize money. The effect has been most documented in
aiming tasks such as those found in first-person shooters. Although a large amount
of research exists, and performance degradation with latency has been modeled in
aiming tasks, there is less work available for other types of games (see chapter 2).
One popular esports game is Rocket League (RL)2 [G1]. It gives the player control
over a car, making the controls fundamentally different from first-person shooters.
Existing models cannot be applied to such a different and complex task. I ran a
remote experiment that participants did on their own computers because an in-
person experiment with sufficient experienced players was unfeasible during the
COVID-19 pandemic. The goal of this thesis is twofold: First, I seek to reproduce
the results of Martens et al. [5] and see the impact of visual latency on performance
and perception in RL for players of different levels of expertise. Second, I try to
look for interacting effects with latency. For that purpose, I modulate the graphics
settings to see if players perceive or act differently with low or high graphics settings
in combination with latency. Furthermore, I analyze the field of view (FOV) sizes
used by the players, and test whether having more of the image in the player’s FOV
has an interaction with latency. Since the experiment is done on the participants’
own computers, I attempt to estimate the baseline latency in order to control for it
as a factor.

1Local system end-to-end delay/motion-to-photon latency (see section 1.2)
2Car soccer video game, published 2015 by Psyonix, used in the study (see section 1.1)

1

Thesis Structure

Chapter 1: Foundations

The chapter Foundations contains the basic knowledge needed to fully understand
the further chapters. It covers an explanation of the chosen game Rocket League
(1.1), definition of the term latency (1.2), what game mechanics are (1.3), why
latency is important in gaming (1.4), and what the different orders of control are
(1.5).

Chapter 2: Related work

As the name of the chapter indicates, it summarizes the existing research on latency.
It is split into three aspects: measuring latency (2.1), perception of latency (2.2),
and the performance and behavior changes due to latency (2.3).

Chapter 3: Experiment methodology

The most important part of the chapter is the explanation of the research questions
that motivate the experiment (3.1). Afterwards, an illustration of why Rocket League
was the game of choice (3.2), followed by a short excerpt about the participants
that the experiment targets (3.3), and then how the experiment works start to finish
(3.4).

Chapter 4: Implementation details

The Implementation details chapter breaks down the steps that were necessary to
make the experiment possible. First, there is a long section clarifying how the latency
was estimated based on prior measurements and knowledge of the sources (4.1).
A thorough understanding of all sources of latency is required to ensure that no
significant factor is left out. The second section groups the documentation of the
other challenges that had to be overcome in order to ensure a smooth automatically
running experiment (4.2).

Chapter 5: Results

The chapter first breaks down the participants demographics, skill level, and other
relevant information (5.1). Then it states the resulting effects of the experiment
conditions on the performance of the participants (5.2) and their perception (5.3).

Chapter 6: Discussion

The following chapter elaborates on the results (6.1–6.3), contains interpretations,
and covers limitations (6.4). Lastly, there is a recommendation for software develop-
ers on how to set a latency target based on scientific evidence, along with guidelines

2 Chapter Introduction

that Rocket League players can use to make educated decisions regarding latency
(6.5).

Chapter 7: Conclusion and future work

The final chapter gives a summary of which goals of the study were achieved,
which weren’t. It also highlights the most significant findings and the holes in the
knowledge, where further research is necessary in order to fully understand the
implications.

Thesis Structure 3

Foundations 1
1.1 Rocket League

Rocket League (RL) [G1], published in 2015 by Psyonix, is a sports video game that
can be summarized as soccer played with cars. It is a popular esport that has been
growing ever since its inception, both in terms of viewership [WWW2] as well as prize
money. The most recent season of the Rocket League Championship Series (RLCS
X, the biggest RL esports event) awarded more than $4.5 million prize money in
total [WWW3]. In the past, the game has had eight world championships that required
players and allowed fans to attend in person [WWW4]. Since the beginning of the
COVID-19 pandemic, all such events have been canceled, including the planned
RLCS X world championship [WWW5]. Regional online events were held instead,
splitting the prize money between the regions. In the U.S., the game has many big
college esports events [WWW6, WWW7]. According to The Esports Observer (TEO), RL is
the 7th most impactful PC game as of the first quarter of 2021 [WWW8]. The press
has repeatedly touted the game as having the potential to become the most popular
esport in the world. The most common reasons cited are that it is easy to understand
even by non-players, and that it is not based around in-game violence, making it
accessible for people of all ages [WWW9– WWW11].

Beyond using cars to play the game, RL differs from soccer in other ways. The
primary game mode is played with 3 players per team, although 1v1, 2v2, and 4v4
modes are also available for play. Players are not assigned to fixed positions and
can drive around freely to take any role when needed. Matches last 5 minutes plus
an infinite time golden goal overtime if the game was tied at the end of regular
time. The field is bounded by walls and a ceiling that keeps the players and the
ball inside, ensuring non-stop play until a goal is scored. This is also made possible
through the fact that there are no additional rules like offside or fouls since the
players cannot actually get injured. The cars are also unlike regular street cars.
They can jump, double jump, do directional flips, and use rocket boosters. Due to
the ability to freely tilt the car when it is in the air, the rocket boosters allow the
cars to fly via propulsion, creating fully 3-dimensional play. This is assuming that
the players are experienced enough to control their cars in these situations. Unlike
soccer simulations (e. g. FIFA 21 (2020) [G2], eFootball PES 2021 (2020) [G3]),

5

Fig. 1.1.: Rocket League screenshot showing a car shooting the ball.

when the player is near the ball, there is no automated portion where the avatar
controls the ball and the player can decide whether to run with the ball or press a
button to shoot/pass. In Rocket League, the player can only control how their car
moves. The ball reacts on impact with the car, following the game’s laws of physics.
With enough practice, players are able to dribble, pass, and shoot precisely and
powerfully. However, this requires a mastery of the car’s movements, similar to how
a real soccer player would need to learn to angle and move their foot for a powerful
shot.

1.2 Latency definition

In the context of this thesis, latency (or lag/system latency/local latency/transmission
latency) refers to the delay between the user performing an action and the relating
result appearing on the screen. The term often used in research is end-to-end latency
[6, 7], or more recently, motion-to-photon latency, originating from Oculus VR [8].
The term latency will also be used when referencing just a segment of the full end-
to-end latency. An example of a segment of the total latency is the display latency,
which refers to the delay from the point where the computer outputs an image signal
until it appears on the display. In those cases, the contextual information will clarify
what is meant.

6 Chapter 1 Foundations

Audio latency and tactile latency are factors that aren’t specifically investigated in
the thesis; however, the method used to create artificial additional visual latency in
the experiment increases the other latencies by the same amount.

In the gaming sphere, latency is often referred to as input lag. The computer and
display lag are considered a part of the total input lag, despite the term specifically
referencing “inputs”. Latency is the exclusive choice in this thesis, but other terms
appear in cited works.

Network latency is introduced when games are played with other players over an
internet connection. Originally, games like Quake (1996) [G4] waited until the
server verified the inputs to display them on screen [9]. This means any network
latency will add to the local end-to-end latency. Savery et al. [10] give an overview
of other networking strategies used in video games. Lag compensation [11] is most
common in modern shooter games, as the plethora of game netcode analyses by the
YouTube channel Battle(non)sense show [WWW12]. This strategy avoids adding local
latency. RL’s netcode works by simulating the future state of the player and game
world (dead reckoning), only requiring adjustments for the parts of the gameplay
that couldn’t be predicted [12]. Since the client has perfect information of the user’s
actions, the unpredictable part is only related to other online players, which is why
the player experiences zero additional local latency on their character. This thesis
only covers the effects of local latency.

1.3 Game mechanics

In order to win at video games, the player has to perform actions such as running,
jumping, aiming, or shooting. These actions are all classified as game mechanics.
Different games have different core mechanics that are essential to the gameplay,
although there is a large overlap between games of the same genre. Often, gamers
split the skills required for gaming into two categories: decision-making and me-
chanical ability1. Decision-making covers anything from long-term strategy to split
second decisions. Good mechanical ability is about how accurately and reliably
players execute the game actions required to actualize the decision they made.
This is very similar to common classifications in psychological literature, where
the distinction is between mental and sensory-motor skills. The two aspects are
never completely separate, but they can be assigned a priority with the following

1Mechanical ability is commonly shortened to mechanics, e. g. if a player has good mechanics, they
are good at executing the game’s mechanics.

1.3 Game mechanics 7

rule: “In sensory-motor skills the overt actions clearly form an essential part of
the performance, and without them the purpose of the activity as a whole would
disappear. In mental skills overt actions play a more incidental part, serving rather
to give expression to the skill than forming an essential part of it.” [13, p. 21].

1.4 Latency in gaming

I consider latency in gaming to be relevant in three ways:

1. player reaction time

2. player performance degradation

3. player perception of latency

The first relationship is simple. In most real-time games, players will have to react
to some sort of unpredictable behavior at some point. The reaction can only occur
after the related event is displayed on their screen, and their inputs also need to be
processed after the reaction. Thus, any extra millisecond of latency subtracts from
the available time the player has to react appropriately. In short, there is less time
for decision-making. The game is more difficult the higher the latency is.

Player performance is tied to latency beyond just reaction time. Assume a player
gets shown a target that they’re supposed to point at. Then they have to close their
eyes while they move the mouse to the target. The expected accuracy is low. With
the eyes open, the expected accuracy is much higher because the player can see the
mouse cursor and target. They can see the result of their movements on screen and
adjust based on that [14, pp. 81–82]. This is a constant loop of predict, do, observe,
adjust that will happen in any real-time game.2 The higher the latency, the further
the prediction needs to be in the future, and the later the adjust step will be, which is
especially problematic if the target is moving. In short, this hurts mechanical ability.
MacKenzie and Ware [15] first demonstrated in human–computer interaction (HCI)
that performance can degrade beyond reaction time. In their experiment, movement
time increased by more than the added latency.3

Player perception of latency is a common topic online in gaming spheres. In
communication with the community, I found many comments like “just tried it
and i instantly noticed a difference oh my god this is amazing thankyou man

2This effect does not have an impact on rapid disconnected movements below 0.3 s. There is no time
to react and adapt on movements that short.

3Further examples will be discussed in chapter 2..

8 Chapter 1 Foundations

:handshake:” in response to an optimization which reduces latency by 7 ms [WWW13].
Self-proclaimed latency enthusiasts do not accept any noticeable delay, regardless
of whether it puts them at a disadvantage. Some of them claim to notice as little
as 1 ms of extra latency. Although such feats have never been demonstrated in an
indirect input task under scientific conditions, it is clear that the enthusiasts will
react negatively to any latency that they can notice. This may lead to complaints
about “sluggish” controls, which can negatively affect the perception of the entire
game. Scientific demonstrations of such effects on non-enthusiasts are available.
Kaaresoja et al. [16] found that the quality of a button was rated poorly when
the response to the press was delayed more than 100 ms. For games in specific,
Jörg et al. [17] found increased player frustration when the controls were delayed,
without players being aware that the reason was latency. Some did call the controls
bad, however.3

Although not specifically demonstrated in games, interactions between the percep-
tion of latency and the performance degradation may exist. For example, a player
notices a degradation in performance and concludes that there must be latency. Or a
player notices latency and performs worse because they have been primed4 to think
that they will do worse.

1.5 Control order

The mouse is the most commonly used aiming device in esports games. The mouse
is an example of zero order position control, meaning the location of the mouse has a
direct correlation to the position of the cursor/reticle on the computer (as defined by
Wickens et al. [19, pp. 147–148]). With a controller, aiming is a first order control
task as the analog stick determines the velocity of the cursor.5 If the analog stick
determines the acceleration, then it is considered second order control. The naming
is based on the equations of motion where zero order: ~x(t), first order: ~x′(t) = ~v(t),
and second order: ~x′′(t) = ~a(t).

Higher order control tasks add an extra level of indirection to the control. This could
either increase or decrease the interaction with latency. The decrease hypothesis
rests mainly on the fact that in higher order control, delays already exist. The user
has to use a control strategy that performs well despite the movement delay caused
by acceleration. The strategy will presumably also work well with additional latency.

4As explained by Kahneman [18].
5Additional smoothing may exist.

1.5 Control order 9

The increase hypothesis can best be described with an example. Let there be a car
along a one-dimensional track that can be moved forwards using the right arrow
key and backwards using the left arrow key. The goal is to get as close to one of
the ends of the track, which one switches at random intervals. When one of the
swaps happens, the player switches direction as fast as they can. Once there is
added latency of e. g. 100 ms, this will increase the time until the player reacts on
average by 100 ms. In this time, the car continues to move in the wrong direction.
This requires an extra 100 ms to get back to the position where the swap happened
without the delay. So in fact the player is at a 200 ms disadvantage. This would be
the case with first order control, but the issue only gets more severe with higher
order control.

Rocket League always uses higher order controls. The throttle, brake, and rocket
boosters are second order controls over the location, as the player controls the
acceleration of the car in the forward direction. The steering is zero order orientation
control of the wheels, and therefore angular velocity of the car. That would make
it a first order control over the car’s orientation, and second order control over
location. However, the wheels are limited by the game physics which means that the
actual orientation cannot change instantaneously like the input could, causing some
potential extra delay. In the air, the player has second order orientation control as
the inputs control only the angular acceleration of pitch, yaw, and roll. Second order
orientation control means third order location control. The only type of zero order
control in RL is the camera movement which the user can do additionally to the
default automated camera systems. These are important at the highest level of play
to allow players to keep a better overview of the field of play; however, there is no
precision required. The experiment in this thesis focuses solely on car control.

10 Chapter 1 Foundations

Related work 2
The related work regarding latency can be split into different categories. First
there is the topic of measuring latency present in human-computer interactions, for
which there are numerous methods that were developed across the last 35 years.
Then there are the effects of latency which are relevant to gaming, as defined in
section 1.4. I cover what the available research shows about the perception of
latency in human–computer interaction and specifically games. Although there are
multiple effects on player performance, they are not separable in most tasks. Thus, I
group the influences on player performance under one section.

2.1 Measuring latency

To calibrate my experiment, I need to measure the baseline system latency. To
determine which method to use, I looked for related research, and found 37 different
sources discussing measuring methods. Since Rocket League is played with a
gamepad controller by the majority of players, the measuring method needs to be
compatible with it.

The majority of methods are related to tracking devices for virtual reality. These often
attempt to create a location or angle delta between the tracker and displayed object
by using controlled movements [20–26]. A picture is most often used to measure
the spatial delta, and since the movement is controlled, it can be used to calculate
the time delta, meaning the latency. Other methods measure the time directly by
starting the measurement when the tracker is past a set point and stopping it when
the virtual response happens [6, 27–29]. The measurement can be done with a
high-speed camera or photosensors with an oscilloscope or special measuring device.
While such methods can in theory be adapted to a controller, the movement of the
analog sticks or buttons is at most a few millimeters, requiring very high precision
for acceptable accuracy measurements.

Rather than relying on movement to visualize latency, Graves and Bradley [30]
used the electrical signals of a microphone picking up the sound of a button press
as a trigger point. Casiez et al. [31] provide another non-intrusive method using a

11

vibration sensor attached to the user’s finger. Both methods have limited accuracy as
the activation point of a button press is not necessarily at the exact location where
sound and vibration is maximal. For this purpose, other methods open input devices
and attach directly to the circuitry in order to measure the exact moment where
a button is pressed, or trigger it through external means [32–35, WWW14– WWW16].
Rejhon’s [WWW14] method wires an LED to a button so that it lights up when the
button is pressed, and uses a high-speed camera to capture measurements. The
number of frames between the LED lighting up and the screen response is used to
calculate the latency. The measurement is not free of bias since a human has to
analyze the video. High accuracy for the average latency can be achieved when using
many samples. The technique has been used in peer-reviewed research [36–39].
Schmid and Wimmer’s [35] method works by triggering the button of an input
device with a microcontroller and measuring the screen response using photodiodes.
The microcontroller has a time resolution of 4 µs, the expected error is small, and it is
easy to automate for a high sample count. My own measuring device was developed
separately but is essentially identical in function to Schmid and Wimmer’s. More
information is available in section 4.1.2.

2.2 Perception of latency

The oldest sources on the perception of latency are educated guesses on thresholds
not based on experimental research. Miller wrote in 1968, “This response should be
immediate and perceived as a part of the mechanical action induced by the operator.
Time delay: No more than 0.1 second” [40, p. 271]. Nielsen [41] is commonly
cited, and references this recommendation as well as Card et al. [42]. It also states
the 100 ms limit, based on experiments about the perceptual fusion of visual and
auditory signals less than 100 ms apart [42, 43, pp. 31–34]. However, as the original
source states, the limit may be 50 ms or possibly even lower under special conditions
[43, p. 34]. These recommendations thus stand on limited evidence, and they do
not consider indirect effects of latency that may be perceivable.

The available research shows that the perception of latency is highly dependent on
the task and input or output type. Users may not perceive latency directly in those
situations, but nevertheless, they may get a subpar experience.

First, there is the distinction between direct and indirect input, which describes the
difference between a touchscreen (direct) and mouse (indirect). Both offer zero

12 Chapter 2 Related work

order control but the finger or stylus on a touchscreen is always on top of the cursor,
while the mouse is on a different surface and the cursor moves relative to its position.
Deber et al. [44] created an experiment which was identical in all aspects but where
the cursor was projected directly underneath the finger or a wall. They found that
in a dragging task, the participants’ just-noticeable difference (JND) was on average
11 ms for the direct and 55 ms for the indirect version. When dragging an object
with latency, the cursor trails a distance behind the finger, which is clearly visible in
direct input where the cursor is then right next to the finger. In indirect input, there
is no direct reference. This effect has been demonstrated even when the direct input
is offset by 65 mm [45]. The size of the cursor plays a role in how visible the spatial
difference due to latency becomes [46].

The difference between a static and a moving task is also severe. Deber et al. [44]
also tested a flashing cursor upon a virtual button press with direct and indirect
projection. They found JNDs of 69 and 96 ms respectively. This result reveals that
latency on a button press is more difficult to detect than on movement, and the
direct input case also allows the detection of lower latencies. This result shows that
direct and indirect inputs are still different, despite no observable spatial difference.
The results from Deber et al. [44] offer a one-to-one comparison of conditions, and
approximately match other research [16, 46–48]. The 96 ms JND for a static indirect
input task matches the theoretical recommendations from the first paragraph of this
section.

Virtual reality is another environment in which direct input exists in the form of
tracking the head. When the user moves their head, the virtual view has to move
the exact same amount or the static virtual world tracked by the eye will appear to
move. Latency will cause a delay in that movement and reduce the spatial stability
of the scene. The data of multiple studies shows that the JND of latency in this
condition is similar to direct touch input results [7, 49, 50]. Ellis et al. [51] and
Adelstein et al. [52] previously reported 10 ms higher numbers. Jerald [50] also
investigated how the user is more likely to perceive latency the faster they accelerate
their head. He developed the following model which he verified in experiments.

∆t = τ + ψ

(1
φ′′

) ∣∣∣∣ τ = 10 ms, ψ = 1 °/s 1 (2.1)

φ′′ is the peak head acceleration in °/s2. Mania et al. [49] and Ellis et al. [53] inves-
tigated what happens if the simple single object environment of the previous studies

1The values of τ and ψ were estimated from the experiments.

2.2 Perception of latency 13

is replaced by one with a background or a complex “photorealistic” scene2. The
results confirm the data from previous experiments, with no statistically significant
difference for the environment conditions.

The output type plays a role in how likely the user is to perceive latency. Using a
custom-built device with haptic feedback, a speaker, and an LED, Kaaresoja et al.
[16] determined JNDs of 52 ms for tactile responses, 80 ms for auditory responses,
and 85 ms for visual responses. Mäki-Patola and Hämäläinen [54] measured similar
audio latency perception using a Theremin3.

Professional gamers may be more sensitive to latency. A draft by Banatt et al.
[55] compared the ability of expert gamers to detect latency after pressing a button
compared to non-gamers. The experiment was done with a custom-made device with
near zero baseline latency. The result for the JND of non-gamers was 114 ms, which
is within the margin of error of what previous studies found. The gamers detected
latency on average at 48 ms, significantly lower. Unfortunately, the experiment
results required the exclusion of some datapoints due to issues with the apparatus
and chosen conditions. Although the quality of evidence is not enough to draw any
conclusions with certainty, it is still a hint that experienced gamers can perhaps
become more attuned to notice smaller latencies. If that is the case, then it draws
into question the validity of all known latency thresholds for this group that were
established with casual or non-gamers.

The research on the perception of latency in a higher order control task is limited.
Martens et al.’s [5] experiment finds that users rate perceived latency significantly
higher at 97 ms of additional latency but does not report a JND. Furthermore, they
found that additional latency of 28 ms significantly increased the participants’ rating
of perceived difficulty. This demonstrates that users can perceive the downsides of
latency without being able to attribute them to the root cause. The experiment is
very different from the simple cursor used by Deber et al. [44]. A direct comparison
is therefore not possible.

Latency can cause negative changes in perception. Kaaresoja et al. [16] and Kaare-
soja et al. [56] studied how user perception of a virtual buttons declines with a
100 ms latency increase. Participants consistently perceived buttons with increased
latency as less pleasant to use and being of lower quality. They were also less willing
to buy devices with high latency buttons. Jörg et al. [17] used a custom game and
added 150 ms of latency for one group of players. Participants in the group rated

2The complex scene shows a completely static room with a table, two chairs, a mirror, a shelf, and a
handful of decorative objects. The lighting was pre-rendered using radiosity algorithms. The listed
polygon count of 35 000 is low by today’s standards.

3Electronic instrument played with two hands.

14 Chapter 2 Related work

the controls as more difficult, were less satisfied with their own performance, and
were more often frustrated than those of the control group.

2.3 Performance and behavior changes due to latency

Performance declines when latency increases. Conklin [57] and Poulton [58, pp. 201–
202] reported on a tracking task latency experiment by Warrick performed in 1949,
which is likely to be one of the oldest experiments studying sub-100 ms latencies.
The original source [59] was not obtained but the reports are quite detailed. The
experiment involved a CRT which displays a target and a cursor which is controlled
by a subject [57]. The target gets oscillated by a function generator while the subject
attempts to stay on it as precisely as possible. For the results of the most difficult
tracking task in the experiment, Poulton [58, p. 202] reports, “The percent time on
target is reliably reduced with a time lag as short as .04 sec.” This task involved the
target moving along overlapping 0.25 and 0.05 Hz sine waves. With a simple 0.1 Hz
sine wave, the performance reduction was “reliable” at 0.08 s, while a 0.05 Hz wave
was not affected. At the highest latency of 0.32 s all waves were affected. This
experiment demonstrates that latency below 100 ms can affect performance and
hints that more difficult tasks may be more affected by latency.

To further investigate these effects, MacKenzie and Ware [15] set out to measure and
model the performance impact of latency on a pointing task with the mouse. The
experiment involved targets at different distances and sizes that the cursor had to be
moved to. This allowed them to calculate the index of difficulty (ID) in bits for every
condition via Fitts’ law [14, pp. 249–255, 60]. They measured the movement time to
target (MT), the error rate (e). In their comparison, they found a significant impact
on both variables. The movement time at 225 ms increased by 63.9 % compared
to the 8.3 ms result, and the error rate increased by 214 %. They calculated the
throughput via Fitt’s law [60], and found a reduction of 46.5 % at the highest
latency. There was also a significant impact of ID on the performance, as expected.
Lastly, there was a significant interaction between latency and task difficulty. The
performance degradation of latency increases with task difficulty. They created a
model to predict the movement time based on task difficulty (IDe

4) and latency

4IDe is the index of difficulty accounting for error.

2.3 Performance and behavior changes due to latency 15

(LAG). A multiplicative relationship provided the best fit for the experimental data:

MT = 230 + (169 + 1.03LAG)IDe (2.2)

The experiment is one of many showing that the performance degradation of latency
increases with task difficulty [36, 61–64]. Ivkovic et al. [29] provide an exception
to this rule as the lower target speed causes a larger decrease in performance with
additional latency. This is, however, likely related to the method of scoring, which is
time on target. By just swiping left and right over the target randomly, the time on
target will already be above zero. The more latency gets added, the more difficult it
becomes to do any purposeful tracking, and it therefore approaches the score of the
random strategy. The player gets a significantly better score on the lower speed, and
therefore has more to lose. This hypothesis can perfectly explain Ivkovic et al.’s [29]
data. Time on target is not a recommended method of scoring tracking tasks [58,
pp. 46–49].

Latency can impede performance at levels below the 0.04 s mark from Warrick’s
[59] experiment [5, 48, 65–67]. Spjut et al. [66] investigate very low latencies.
They compared 12 and 20 ms as two scenarios seen in real-world optimized esports
games. They found a significant difference in median task completion time. The
median task completion time increases from 1.348 to 1.530 s (d = 0.319) with the
increased latency. This is a very noticeable disadvantage at the highest level of
competition.

Performance loss due to latency can be reduced by using compensation techniques
such as post-render warping [68–70]. This can result in virtual artifacts. An
alternative strategy is to predict inputs ahead of time [71–73]. This has the issue of
potentially causing jittery movement. Ivkovic et al. [29] investigate the option to
add performance enhancing input modifications that counterbalance the loss due to
latency.

Jittering latency was investigated by Pavlovych and Stuerzlinger [62] in a tracking
task. They found that it significantly increases the error by more than the same
value of constant latency. However, in a follow-up study, the jitter did not result in a
statistically significant increase of the error at all [63].

Increasing latency can lead to the user changing how they control virtual movements
[58, pp. 203–205, 5, 64, 74–76]. The common denominator between the studies
is that users adjust their input less often but use larger magnitudes to compensate.
Poulton [58, pp. 203–204] describes that in a tracking task with 0.18 s of latency,
the user makes corrections to the path every 0.38 s, which matches the latency plus

16 Chapter 2 Related work

reaction time (0.2 s). Friston et al. [64] demonstrate that in a pointing task (like
MacKenzie and Ware [15]) their participants move the mouse faster when latency
is increased, and then need more time to correct mistakes from overshooting the
target.

A direct comparison of zero to first order control was done by Claypool [37] in
a custom game called Puck Hunt. The game involves a puck with constant speed
bouncing inside a square area. The goal is to get the cursor on the puck and click,
which was done with both a mouse and a gamepad. The experiment involved
latencies of 50–450 ms. They found that the selection time was well approximated
by an exponential model of latency d and target speed s.

T = 2 + 0.3ed − 0.03es + 0.2edes (2.3)

It shows a steeper increase with latency than the mouse data [77]. Since the task is
overall more difficult with the gamepad, it is unclear whether the difference would
still persist in a task of equal difficulty. The effect size was not reported. Pantel and
Wolf’s [78] results of lap times in a racing game can also fit an exponential model,
although no modelling was attempted by the authors.

Martens et al.’s [5] study is the only one using second order control with a focus
on smaller latencies. This makes it the closest predecessor to the experiment in
this thesis. Based on prior work in control theory, Martens et al. argue extensively
for the hypothesis that higher order control requires lower latencies for maximum
performance, especially with large control gains. They did, however, not expect that
to necessarily mean that players perceive lower latencies. The experiment setup
involves a ball balanced on a beam. The participants’ task is to keep the ball as close
to the center as they can. This differs from other second order control tasks, in that
the beam displays the user’s zero order inputs. The baseline latency of the system
was 11 ms.

In the first round of tests each subject did trials on 0, 49, 97, and 194 ms of
added latency with two different levels of input gain. The order of conditions was
randomized. They found a significant decrease in the ability of the participants
being able to keep the ball centered on the beam. This difference was significant
for the lowest added latency of 49 ms. Performance was also affected by control
gain, but there was no interaction between the two factors. Further analysis showed
that latency cause participants to adapt their mouse movements, and additionally,
the authors note, “[. . .] the participants, who adapted more strongly to , tended
to show a smaller performance loss” [5, p. 9]. The control adaptation data showed
an interaction between latency and control gain. Both factors and their interaction

2.3 Performance and behavior changes due to latency 17

also caused an increase in perceived control difficulty. Participants were also polled
about their perceived latency, which they were able to distinguish at better than
random chance for the 97 and 194 ms conditions. The discrimination was more
pronounced at the higher of the two gain settings.

In their second round of testing the conditions were simplified, using only the higher
gain and not asking the participants about perceived latency. The added latencies
were 0, 14, 28, 42, 49, and 97 ms. Performance was significantly affected at all
levels, with an effect size of d = 0.61 at 14 ms. Perceived difficulty did not pass the
significance level at 14 ms once Bonferroni correction was applied, but it did at every
level above. Similarly, control behavior changed significantly at 28 ms and higher.

In summary, the study by Martens et al. [5] shows that 14 ms latency can significantly
affect human performance in a second order control task. Latencies below this have
been insufficiently researched. Users are able to notice differences of 28 ms and
above, but were not able to attribute these changes to latency until 97 ms. There
is insufficient evidence to conclude whether latency is more or less of an issue in
higher order control tasks.

18 Chapter 2 Related work

Experiment methodology 3
3.1 Research questions

The purpose of the study is to determine the effects of induced latency on player
performance and perception in an esports video game with experienced players, and
to further the understanding of latency by investigating potential interactions. The
research is to be done with a video game that doesn’t involve aiming with a mouse,
as those are already well researched.

As a minimum, I have the goal of replicating the following findings of previous stud-
ies. I test degradation of player performance with 8.33–50.00 ms of added latency,
as well as their perception of the added latency. The evaluation of performance
is based on shot power, precision, whether the ball is scored, how many tries the
player needs to make contact with the ball, and a custom score metric. This is a
compound metric of the stats that is supposed to approximate how effective the shot
would be in an actual game (explained in section 4.2.2).

H1 Added latency degrades player performance.

H2 Players report higher values when polled about their perceived latency if
latency is added.

The difference compared to most previous esports studies is that RL doesn’t involve
a zero order control aiming task. Compared to a similar second order control study
[5], RL is an established game. I expect that the experienced players are able to
distinguish smaller latencies due to their familiarity with the game’s controls. I
expect that the best players’ performance will degrade the most with added latency,
as their mechanical ability requires great timing and accuracy.

H3 Experienced players are able to distinguish added latencies better.

H4 Experienced players’ performance degrades more with added latency.

Beyond the difference in the game, the purpose of the study is to test the following
hypotheses:

H5 The graphical effect density has an interaction with the effects of added latency.

19

H6 The players’ field of view (screen size in relation to distance) has an interaction
with the effects of latency.

These are untested hypotheses that will further the understanding of latency. They
would allow players and developers to make decisions when choosing graphics
settings to partially mitigate negative effects of latency. Similarly, a different monitor
or sitting distance may be chosen if there is an interaction with latency.

The significance level for the hypotheses is α = .05.

3.2 Why was Rocket League chosen?

There were multiple reasons for why RL was chosen. The most important points
are in the list, with a detailed explanation afterwards.

Rocket League . . .

1. is popular, with a thriving esports scene and a lot of experienced players.

2. is easily moddable through BakkesMod (BM)1.

3. is not based around zero order control aiming mechanics.

4. has a high degree of mechanical difficulty.

5. is a game I am very knowledgeable about. I understand how it works on a
gameplay and technical level.

6. has a community in which I have contacts and followers, making it possible to
find many experienced participants.

1. The game’s popularity and esports scene makes it more likely that a large group
of people will participate. It is also easier to find participants who are highly
experienced in the game. Comparing players of different experience levels was one
of the goals of the study (see section 3.1).

2. Modding allows for better control in experiments, automation, and detailed data
collection that leads to better studies. I knew that this is possible in Rocket League
through a BakkesMod plugin. There is even a way for easy plugin distribution2 which
allows download and installation in a few clicks for anyone using the mod. Since the

1User created Rocket League mod with an open API to allow developers to create their own mods for
the game.

2bakkesplugins.com

20 Chapter 3 Experiment methodology

https://bakkesplugins.com/

mod already has thousands of unique users daily, it makes it easy to convince players
to participate. Similar tools are not available for most other esports games. Originally,
the experiment was planned to be done at an in-person professional tournament.
Due to the COVID-19 pandemic, it was unclear when the next tournament of that
kind would happen. With time constraints in mind, it was decided to move the
experiment online. This meant it would have to be fully automated to ensure that
every player follows the same steps, making it impossible without a mod.

3. As mentioned in section 1.5, RL controls are of higher order than all the other
most popular esports. Even though controlling the car can be classified as a tracking
task, it is fundamentally different from the other games because there are more
degrees of freedom. There have been a significantly fewer studies on the effects
of latency on higher than zero order control [5]; none with esports games. This
experiment is supposed to be a step in that direction. It is relevant for racing and
flying games, and it may also be relevant for shooter games, as the player movement
in those games is either first order or second order control. Player movement is only
of secondary importance in those games. It is still often expected that players make
movements with high precision.

4. Rocket League has a lot of mechanical depth. There are many techniques that take
hundreds to thousands of hours of practice until a player can do them semi-reliably.
A player picking the game up for the first time will have trouble steering the car to a
stationary ball and shooting it into the goal. This is part of the appeal of the game,
as it expected that the high difficulty will result in it being very latency sensitive.
This is also different from any artificially created task for the purpose of latency
testing. Such a test would inherently be new to the participants, and thus, could not
be made so difficult that players need hundreds of hours of practice to learn it.

5. I am personally highly knowledgeable about Rocket League, having spent thou-
sands of hours testing, researching, and producing videos on how the game works.
The Lead Gameplay Engineer of Rocket League once said he learned a few new
things about the game from my videos [12]. The knowledge gives me a head start
in setting up experiments and knowing what to look out for. This turned out to be
especially useful when having to fully automate the experiment due to it being run
online.

6. In addition to the benefits in knowledge, my videos have allowed me to make
contacts in the community and get followers on YouTube and Twitter. This makes it
considerably easier to get a large amount of experienced players and even profes-
sionals to participate. This was one of the goals for the experiment.

3.2 Why was Rocket League chosen? 21

3.3 Participants

Since the experiment would have to be done online due to the COVID-19 pandemic,
I decided to let anyone participate to generate a large dataset. In order to attract
participants, I put out a video on YouTube and announcements on my social media
explaining the experiment and how to partake [WWW17]. I personally contacted all
professional players that were following me on Twitter in order to ensure participa-
tion of players up to the highest skill level. No personal compensation was offered to
anyone. The analytics of the platforms show that the audience is 98.7 % male, and
3
4 are age 18–34 y. The vast majority of viewers are from North America and West
Europe. Due to past content being mainly about Rocket League and some about
latency, it is expected that the average viewer of the announcement is more invested
in RL and more informed about latency than the average player. The information
collected about the participants of the experiment is relayed in section 5.1.

3.4 Experiment setup

In order to answer the research questions, I set up the experiment with the inde-
pendent variables: graphical effect density, added latency, and shot. The between-
subjects variables that I consider are player skill group, the baseline latency of their
system, and the monitor being in the peripheral vision of the participant.

There are three graphics conditions. One with all the effect settings to the minimum,
one with every effect set to the maximum, and one condition with the settings
the participant usually uses. The RENDER QUALITY setting does not get changed
because it is just a render resolution setting. Anti-aliasing and motion blur are
also left unchanged, as I consider them to be about sharpness and not a graphical
effect, similar to resolution. The biggest effect differences between the minimum
and maximum graphics conditions are bloom lighting, lens flares, grass straws
extending from the ground, dynamic shadows, moving background audiences,
flashing cameras, waving flags, and weather effects in the form of moving clouds
and a shader simulating rain droplets. The map MANNFIELD (STORMY) was chosen
to ensure this density of effects. A previous study investigated the impact of graphical
complexity on perceived latency, but both conditions only tested a fully static scene
[49]. The highly dynamic effects in this experiment may make the start and ending
of a movement less obvious which I believe could negatively influence the perception
of latency. It may also be outright distracting.

22 Chapter 3 Experiment methodology

The added latency conditions are 0.00, 8.33, 16.67, 33.33, and 50.00 ms. The
minimum step size is due to technical reasons explained in section 4.2.1. The step
size is increased beyond the two minimum steps in order to cover a wider range of
latencies without creating too many conditions. The maximum of 50 ms is expected
to be enough to see effects based on prior latency studies and blind self-tests.

I designed 5 shots to cover different game situations, requiring different approaches,
and covering different difficulty levels. The shots are designed to balance two factors:
completable by less experienced players, and player skill being an important factor
in how precise and powerful the shot is scored. Due to the highly experienced
target audience, the second factor takes precedence. I consider it important because
I assume that when skill makes a large difference, latency does too. All shots
require significant steering adjustments to touch the ball, in order to ensure that
the participants cannot simply drive a straight line at the correct speed, which I
presume would be less affected by latency. In a turn, a player has to decide when
to stop the turning input based on the visual information, which is more difficult
when the player has to predict further into the future due to latency. Detailed
descriptions of each shot can be found in appendix A.1.3 There is a limit of two
touches per attempt to avoid dribbling. Allowing dribbles would change the outcome
dramatically, equalize different shots, and introduce a lot of noise if a significant
portion of the participants attempted this strategy.

The experiment follows a randomized block design with the conditions, graphics by
latency by shot. Each scenario gets repeated exactly twice 3× 10× 5. The 10 can
be thought of as each of the 5 different latency conditions existing twice. The order
in which the three graphics conditions are shown is random for each participant,
but all repetitions on the same graphics settings happen in a row. The order of the
(10) latency conditions is random but stays constant for a set of five shots, which
are also in a random order. Before the 150 shots, there is a warm-up period of 10
shots with unchanged latency and graphics. This is done to limit noise, as the first
trial of a shot will be very different from performing a shot that one knows. Of
course, further learning is to be expected across the experiment, but it isn’t easily
preventable and there are no order effects due to the complete randomization of the
condition order.

In order to partake in the online experiment, a potential participant has to download
and run the experiment on their own hardware. The experiment is an easy instal-
lation for the user. The majority of the target audience is expected to already use

3The shots can also be seen on video [WWW18] or loaded in the game with the custom training code
CAF1-E26A-0AC0-F792.

3.4 Experiment setup 23

BakkesMod. If not, it requires the download of an installer and clicking a common
installation process. When BM is installed, plugins — such as the one for the experi-
ment — can be installed with a single click on bakkesplugins.com. To activate the
plugin, a single button press was needed. This brings up the privacy policy, which
informs the user about all the data that is being collected in the experiment and how
it is being used. If the user agrees to it, they can continue and will be loaded into
the map for the experiment.

At the beginning of the experiment the participants are instructed on what they
should be aiming for: “Your goal is to shoot into the center of the net as precisely
as possible. Power is good, but the priority should be precision.” They are also
provided information on the experiment structure.

Detailed data gets collected on every shot. This involves basic requirements to assert
which shot and scenario the player is on and checks of whether it was correctly
loaded and the status code for completion. Furthermore, there is data that allows
the assessment of how well the player performed, i. e. the location and velocity of
the ball and car, how often the player missed the ball, how many times the ball was
touched, and whether a goal was scored. Lastly, there is performance information
about the game i. e. frame time, game thread time, render thread time, and gpu time.
These are necessary to estimate the participant’s baseline end-to-end latency.

During the experiment, the participants are polled after every set of five shots. The
question displayed is, “How delayed did your inputs feel during this part of the
experiment?” (see figure 3.1) The answer is given on a scale of whole numbers
between 0 and 6 which matches the 0–6 physics ticks of delay applied during the
experiment.

Fig. 3.1.: Dialog displayed to the participants after every set of shots.

24 Chapter 3 Experiment methodology

https://bakkesplugins.com/

After completing all the shots, which is expected to take around 20 minutes4, the
participant is shown a survey to provide additional information. This includes how
far the player sits from the monitor5, estimated hours of RL experience5, whether
they are a professional player, age5, and gender5. Additionally, there are questions
about the player’s hardware in order to estimate the latency on the participants
computer. When possible, the information was directly read through code. The
details are covered in sections 4.1.4 and 4.1.5. The participant can then press
“Finish”. This brings up a confirmation dialog, informing the user that their data will
be sent.

4It may take longer for a player of low skill because shots get repeated when no contact is made.
5Answering was not required

3.4 Experiment setup 25

Implementation details 4
4.1 Measuring and estimating latency in Rocket League

Since the experiment is done on the participants’ own computers, they are expe-
riencing different baseline latencies. During the experiment, additional latency
gets added to compare player performance and perception on different amounts of
latency (see section 3.4). It is expected that a participant’s performance and percep-
tion is adapted to their baseline latency. A player used to a higher baseline latency
could have learned to be better at dealing with latency in general. The opposite
effect might also be possible if there is a soft border at which latency becomes so
high that performance drops off significantly. Since the players can judge their own
performance, it could affect the perception equally. In order to control for these
potential effects, I try to figure out the participants’ baseline latencies.

Asking each of the participants to accurately measure their own latency as in
section 2.1 is not a feasible solution as it requires specialized gear or a high frame
rate camera. In order to get an estimate of players baseline latency, I take an
alternative approach. I estimate the input lag based on the participant’s monitor,
input device, frame times, and other related measures.

This section explains how the estimation of latency is done. In order to make an
accurate estimate, one has to fully understand all the sources of latency that exist
for an end-user playing the game. This is the topic of the first subsection. The
knowledge fuels the theory behind the estimation, while measurements calibrate
and validate the estimation. The subsequent subsections cover how latency was
measured, how the measurement data was used, and the math of the theory.

4.1.1 Understanding the sources of latency

There are various sources of latency when playing a video game. These can be split
into three main parts of the input-output-chain. The input device (capturing the
player’s action), the computer (handling and calculating the game state and graphics

27

based on the captured input), and the monitor (displaying the graphics calculated
by the computer) [WWW19]. Some latency is caused by the connection of the three
parts. Further subdivision of the three parts will be discussed in the subsections.

4.1.1.1 Input device

Whenever the user wants to interact with the computer, they need some kind of
input device. These devices can range from the keyboard and mouse over touchpads
and trackballs to joysticks, steering wheels, and controllers specifically created for
gaming. Rocket League displays a recommendation to use a controller when the user
starts the game for the first time on PC. A keyboard with a mouse is the alternative
default input method. Other platforms (PlayStation, Xbox, Nintendo) are only
compatible with the officially supported controllers. 89 % of the participants use a
controller. The remainder use a keyboard either with or without a mouse. I decided
to only use controllers in the estimation for the following reasons:

• The participants used numerous different keyboards and mice, which would
all have to be identified, and their individual latency measured or sourced.
77 % of the controller players used a PlayStation or Xbox controller.

• The keyboard and mouse are separate devices, which are likely to have differ-
ent amounts of latency. It is unclear how differing latencies in combination
will affect the player’s performance or perception.

• The dataset is still large without the non-controller players.

There are three different input types on a regular controller: buttons, joysticks
and triggers. Buttons can be any kind of digital switch that is either on or off, the
joysticks are 2D analog inputs that can be pushed up-down left-right, and triggers
are 1D analog inputs that measure how far the trigger is pushed.

Buttons Buttons are an input method with only 2 possible states, on (1) and off
(0). The point where a button is pushed a certain distance to switch from the off to
the on state is called the activation point [79]. There is a delay between the time
the user’s finger starts to move and the time when the activation point is reached.
This will depend on the travel distance of the button, required force, and how the
user pushes the button. The users’ behavior is impossible to account for without
additional equipment to measure the true first reaction. Because of this, I only
account for the latency that happens after the activation point is reached.

28 Chapter 4 Implementation details

Regular buttons make use of a digital switch. An electrical connection is made or
broken once the switch is pushed beyond the activation point, which causes a voltage
rise or drop. The signal propagates through the connection to the microcontroller
at close to the speed of light. This delay is orders of magnitude lower than the
milliseconds of total delay relevant for the experiment; therefore, it can be ignored.
The microcontroller can either detect this change through interrupt circuitry or by
manually checking the signal state at an interval (polling). With an interrupt based
approach, the microcontroller can immediately handle the change. With the polling
based method, it is possible for the electrical connection to be made right after it
was polled. When polling with a frequency of fbut, the maximum delay will be 1

fbut

(e. g. fbut = 1000 Hz, 1
fbut

= 1 ms). Since the user is unaware of this internal polling,
it is expected that on average a button press will occur uniformly random in the
interval since the last poll. The average delay therefore is 1

2fbut
.

This does not account for switch bouncing. In regular buttons, the switch from off to
on (or the other way around) is not a clean transition. The electrical contacts in the
button bounce off each other when contact is first made. After a few milliseconds, a
solid connection is made and the switch stays on continuously. If this issue is left
ignored in the design of the circuit and software, then the microcontroller will detect
multiple button presses when there was only one. This would always happen with an
interrupt based method. With polling, it may or may not happen, and the lower the
polling frequency fbut the lower the likelihood of a false positive double press. This
is insufficient, as bounces can still happen. One possible solution in the circuit is a
capacitor. A capacitor can smooth and slow down the rise and fall time of the signal.
This will cause a delay between the time the activation point is hit, and the time
the signal measurement transitions from 0 to 1. This setup can also not guarantee
that the signal only transitions from 0 to 1 once per press, as switch bouncing can
occur right as the delayed signal transitions from 0 to 1. An additional noise gate
with hysteresis is required to guarantee that such spikes do not make a difference
[80]. A double throw switch can also offer a solution. It offers two terminals; one
to the on state and one to the off state. The switch will never bounce all the way
from one terminal to the other. This allows for a switch [81]. Alternatively, it is
possible to handle bouncing issues in software. This requires some waiting until the
bouncing has subsided, and the signal is constantly on/off or a certain threshold of
on/off switches is passed. This will cause a delay on press and release. The more
certain about true change an algorithm is, the more delay there is. It is also possible
to look only for the leading edge of a press or release and immediately count that
as a press with no delay, ignoring any changes for a period in which the switch is
expected to bounce. This is more likely to work well on a button press than release,

4.1 Measuring and estimating latency in Rocket League 29

as shifting the finger on a pressed button may cause very short disconnections of the
electrical connection that wasn’t intended as a release by the user. Depending on
the exact type of switch, an unintended press could also happen with this method if
there are vibrations from the user shaking the controller. This is more likely if the
user already applies a low amount of force to the switch, mainly used in gaming to
lower the physical time until the button is pressed. Therefore, such a strategy would
not be robust.

Some gaming hardware manufacturers (e. g. SteelSeries, RAZER) have started using
optical switches to get rid of bouncing issues and consequently reduce latency. As of
the time of this writing, these switches are only used in their keyboard and mice,
not their controllers.

Analog sticks The analog sticks are a type of 2-axis isotonic1 thumb joystick,
installed on all official controllers of the major console platforms (PlayStation, Xbox,
Switch). They can be moved in a circular area, and as their name suggests, the
controller measures an analog signal for each axis and turns those into digital values
to send to the computer ([x, y] | x, y ∈ {8 or 16-bit int}). Functionally this works by
using a lever that is connected to two rotary potentiometers sitting perpendicular to
each other [WWW20]. Both act as a variable voltage dividers, the voltage depending on
the angle of the lever on each axis. The voltage is measured by the microcontroller
with an analog-to-digital converter (ADC) that is either integrated or external. The
measurement only takes a few processor cycles, and is therefore fast enough to be
considered instantaneous on the millisecond-scale of total delay relevant in this
context. Joysticks based on hall effect and optical technology exist, but are not used
in commercial gaming controllers.

Similar to button polling, the analog signal gets sampled at distinct timepoints.
When sampling with a frequency of fana, the analog stick position known by the
microcontroller at any random moment may be 0 to 1

fana
old. The average delay is

1
2fana

as it is for buttons. It is also possible to define the latency in terms of distance.
If the analog stick is moved with a constant velocity, the known location at time t

will on average be [
x(t)+x(t− 1

fana
)

2 ,
y(t)+y(t− 1

fana
)

2]. That is exactly halfway in between
the true locations at time t and t− 1

fana
. For non-constant velocities, it can be said

that the stronger the acceleration, the larger the average spatial delay. The measured
position will on average be closer to the true position at time t− 1

fana
. The opposite

is true for deceleration, where the measured position will on average be closer to
the real position. In the latency estimation, these acceleration based differences

1sensing the angle of deflection, as opposed to isometric (sensing force) [82, pp. 106–107]

30 Chapter 4 Implementation details

are ignored as it is impossible to account for movement that the controller does
not capture. This can theoretically cause up to 4 ms of inaccuracy, but assuming
randomly distributed movements the average is exactly correct.

Noise in the signal is an important consideration for the design of the controller. If
the manufacturer of the device determines analog noise to be too high after trying
to minimize general electrical noise in the circuit, they may take additional steps
to reduce it specifically for the analog sticks. As mentioned in the button section,
a capacitor directly connected to the potentiometer output can smooth the signal.
The introduced delay will depend on the rise/fall time of the capacitor. There are
also specific noise reduction modes that can be used in some microcontrollers that
will purposefully shut down elements not needed for the measurement [83]. This
could potentially add an overhead and thus reduce the sample rate. One way to
reduce noise through software would be to oversample the measurements and take
the average of n samples as the signal. The delay calculations from the previous
paragraph can be simply adjusted to this change by replacing 1

fana
with n

fana
. Other

software methods of filtering, such as a Kalman filter, may add no latency or different
amounts of latency. They may also consider small movements noise, and filter those
out entirely. A player using a controller with a strongly filtered analog stick may feel
as if the game is not responding to their adjustments. This potential issue is difficult
to quantify and compare to regular delay.

Triggers Triggers are a single-axis analog input method. They are present in most
controllers in the form of a lever, but the rotation axis is often positioned in a
way that pulling the trigger feels similar to pressing a button with a long travel
distance. There are different ways manufacturers measure the trigger position. The
Thrustmaster eSwap Pro controller uses a rotary potentiometer, the Microsoft Xbox
controllers use Hall effect sensors, and Sony uses pressure sensitive buttons for their
controllers. Each of these methods does not have a significant impact on latency
and is most likely chosen for cost or reliability reasons. They all modulate an analog
voltage signal that the microcontroller can measure. The expected noise concerns
and delays of triggers are exactly the same as those of the analog sticks.

USB, microcontroller hardware and software The task of the microcontroller in the
input device is to measure signals, translate them to the desired format, and send
them to the computer. Each of these tasks requires instructions to be run by the
microcontroller. One of the limiting factors of the speed of that operation is the clock
speed of the processor. There are cheap microcontrollers available capable of running

4.1 Measuring and estimating latency in Rocket League 31

at over 100 MHz. This results in more than 100 000 clocks in a single millisecond.
For power saving reasons (battery powered), the clock speed of some processors
may be lowered to as low as 32 kHz in which case properly handling all inputs
within 1 ms may not be possible. Since the commercial controllers are not openly
documented, information on the chosen clock speeds isn’t publicly available.

It is more likely that purposeful waiting for issues like bouncing introduces signif-
icantly more delay than actual execution time of measurements and calculations.
Incorrect prioritization of the computing resources could also cause increases in
latency. This is a challenge for complex controllers like the DualShock 4, which has
audio capabilities that it needs to control along with the handling of inputs.

In order to send the information to the computer, the controllers used in the experi-
ment all use USB connections in wired operation. The Device Class Definition for
HID 1.11 specifies how the connection is used for input devices [84]. The biggest
consideration is the polling rate. The device itself defines the bInterval value,
which tells the computer at which frequency it should poll. It does however need
the context of the USB device speed. Low speed devices can be polled at up to
125 Hz, full speed devices at up to 1 kHz, and high speed devices at up to 8 kHz.
As mentioned in the button polling example, the average delay introduced is given
by 1

2fbut
and the worst case delay 1

fbut
. Thus 125 Hz polling can introduce in the

worst case 8 ms of input lag, while 8 kHz polling will cause at most 0.125 ms. Most
gaming mice have the ability to request USB polling at 1 kHz. For controllers, special
drivers are needed to run them out of their intended specification. All the popular
controllers used in the experiment request 250 Hz polling, increasing average latency
by 1.5 ms compared to 1 kHz. According to the spec, the controller is supposed to
send input reports through the Interrupt In pipe at the rate of polling [84]. The
controller doesn’t have to do that though, which the Xbox controllers demonstrate.
They only send up to 124 reports per second, and none if the inputs haven’t changed.
It also has to be noted that the interrupt pipe doesn’t work like a true interrupt, as it
will only be handled when the computer does the next USB poll request, and does
therefore not circumvent the delay.

Wireless operation is popular through Bluetooth, or custom wireless protocols, both
in combination with a USB dongle or an integrated chip. The signals travel through
the air insignificantly faster than through cables. Wireless connections can suffer
from lack of signal strength and interference. This can result in inputs never arriving
at the computer, which means there is extra latency until the new information
finally does arrive. Depending on the protocol, inputs completely dropping out may
be possible, and a button press might never be recorded. The impact of wireless

32 Chapter 4 Implementation details

technology is hard to quantify on the average input lag. As long as the protocol used
allows very low latencies, the average delay is going to be the same as on USB with
the same polling rate. There is also the possibility that it is slightly faster through
an integrated Bluetooth chip that isn’t bounded by the limits of USB. However, the
worst case delay is likely to be much higher than on cable, unless one would try to
measure in a perfectly isolated lab.

Conclusion The average latency of a controller cannot be estimated without know-
ing anything about the code running on it. However, it is possible to use external
tools to measure the latency of a controller. It is expected that equal controllers
run the same code and use the same components and therefore have the same
latency. Based on available external evidence [WWW15, 85] and my own testing, this
assumption holds true.

4.1.1.2 Display

The display is the device which presents the visual result calculated by the computer.
It is the final part of the input-output chain. The section is only the second of three
though. The software has to account for some aspects of the monitor which is
why this order is easier to understand than a linear one. There are several ways in
which a monitor can introduce latency. Some are dependent on the specific display
technology, but not all types will be covered.

Scanout The scanout process is best described by explaining how a cathode-ray
tube (CRT) display functions. The tube creates an electron beam which gets bent
with an electromagnet and hits a phosphorus screen. The screen lights up where
the beam hits it. To turn this into a display capable of showing any image, there
is a pattern of red, green, and blue (RGB) portions, the combination of which can
create any color. The beam gets bent across the entire display from one side to the
other, and this gets repeated for every line of resolution that the display has [86].
Meanwhile, the intensity of the beam gets modulated to allow any specific raster
point (pixel) to have any brightness. This entire process happens 60 times a second
(f = 60 Hz) on a typical display. So fast that it creates the illusion of a continuous
image without flicker, despite each pixel only being lit up a fraction of the time after
the electron beam hit it.

The CRT display gets its signal over an analog connection which is exactly what
modulates the intensity of the electron beam [87]. Information cannot be transmitted

4.1 Measuring and estimating latency in Rocket League 33

the entire time. Whenever the beam has moved from one side to another, it will
readjust back to the first side while blanking [88, p. 122]. This is called horizontal
blanking. When the entire display area sweep is completed the same principle
happens vertically too. At the vertical blank, the monitor will send a signal back to the
device providing the image signal, which is used for the purposes of synchronization.
The use of the vertical synchronization (VSync) signal prevents the image from being
updated in the middle of scanning out, which creates a visual artifact known as
tearing [89, p. 538].

CRT displays are regarded as zero latency because they display the signal immedi-
ately. The time delay due to the signal traveling through the cables and the electrons
through the CRT is only a few nanoseconds, and therefore, negligible. When con-
sidering the scanout, CRT displays do still have inherent latency. Even though the
pixel being currently illuminated is as up-to-date as it can be, each individual pixel
has to wait 1

frr
time to get the next update. On as screen with a 60 Hz refresh rate

that is 1
60 s = 16.7 ms. So a random pixel on the display will at any moment have a

latency in the range of [0, 1
frr

) and on average 1
2frr

. That is 8.3 ms on a 60 Hz screen.
This does not account for the blanking times which are monitor dependent and will
affect the true number by less than 5 %.

Liquid crystal displays (LCDs) are the most common type of display in use today
[90]. Liquid crystals act as polarizers that can change their function depending on
the applied voltage. With the help of a second static polarizer and a backlight this
makes it possible for any liquid crystal to create any brightness in theory. In practice,
perfectly blocking all light is not possible. The crystals are organized in a matrix
with RGB filters [88, p. 122], making it possible to mix any color. In this matrix, it’s
not possible to address all pixels at the same time which is why a multiplexing is
used to apply voltages to pixels one at a time [91]. This ultimately means they are
driven in order like in a CRT and suffer from scanout latency the exact same way.
Although blanking would not be needed from a technical standpoint, the displays
still have it for intercompatibility with CRT signals [89, p. 538].

CRT displays can be driven at higher refresh rates by reducing the resolution, as
that reduces the amount of lines the beam has to trace per refresh. The total lines
drawn per second stays the same. Modern LCDs for gaming often have refresh rates
of 144 Hz (3.5 ms avg.scanout latency) at resolutions of up to 3840× 2160, and
the monitor with the fastest scanout currently available in a consumer LCD runs at
390 Hz (1.3 ms avg.). This display is likely to be faster than a CRT overall, despite
suffering from the other issues that can cause extra delays in LCDs.

34 Chapter 4 Implementation details

Pixel response time Liquid crystals do not change state instantaneously. A great
deal of research has gone into making the changes fast enough to be used in motion
displays at all [92]. Modern displays are able to transition between most brightness
levels fast enough to fit into a 60 Hz refresh cycle. Gaming displays are often
advertised as having 1 ms response times, which are based on 10 to 90 % transition
completion [93]. Reviews show, however, that this is only true for a portion of
the transitions and the average lies multiple milliseconds higher (e. g. this review
by O’Keeffe et al. [WWW21]). A brightness transition from 0 to 50 takes a different
duration than one from 205 to 255 (8-bit values). That is the reason reviews test a
variety of brightness values.

The exact impact of response times on latency is not possible to put into a single
number without some loss of information. If the display is showing a ball moving
across the screen, the latency with a bright background could change compared to a
dark one. A change in the brightness of the ball also could. Even if it was possible to
quantify the average response time of a display in relation to the average content
displayed on it2, it would still not provide a solution. The issue is fundamental
to pixel responses being non-instantaneous. If the transition was stopped at 50 %
would the user still see the change? In most cases, yes. Does that mean that the
0 to 50 % response times should be used instead of 10 to 90 %? The user may still
be able to detect even a 10 % completed transition, however, human reaction times
are affected by stimulus intensity [94]. Thus, it would be expected for a display
with a 1 ms fully completed response to allow for a faster reaction than one which
has only completed 10 % in 1 ms and takes an extra 9 ms for the rest. The effects of
this continuous change on human reaction time has not been sufficiently researched
yet.

In the thesis experiment, monitor response times are disregarded because quantifying
the effects is not possible. I assume the players react quickly even to small stimuli.
The results and estimations used are for the first measurable response. More info in
section 4.1.5.

Backlight strobing Some modern LCDs have the option to strobe their backlight
as a means of reducing perceived motion blur. The details of this are not relevant
for this thesis. However, it is important to know how strobing affects response
times. The strobe is timed to happen after most pixels have completed the response
transition. Therefore, when strobing is active, small deviations in response times are

2Ideally one would also weight each object for its importance to the user, i. e. in Rocket League the
ball and cars are important but a pixel displaying a part of the background scenery is not.

4.1 Measuring and estimating latency in Rocket League 35

not going to affect the user’s reaction time. When the strobe occurs, the stimulus is
already at full intensity. This does make it possible to clearly define the total latency
of a monitor. Unfortunately (for the experiment), strobe modes are not used by most
gamers.

Digital processing Modern displays also introduce latency through their digital
processing chain. The digital part starts at the connection where the display uses a
DisplayPort or HDMI interface. Despite working digitally, both are able to transfer
pixel data in real-time and HDMI even has a mode to transfer the data faster than the
refresh cycle demands. This could theoretically allow a 60 Hz display to scanout an
image in 1

120 s, reducing latency, but it isn’t active in monitors right now. The latency
in digital monitors happens due to the monitor processing. A digital signal has to
be turned into an analog one to drive the pixels. In order to calculate the correct
voltages for the pixels, a gamma curve has to be used, although manufacturers may
employ additional techniques. As long as the techniques are simple transformations,
they should cause only negligible delays. Sometimes more complex transformations
(e. g. sharpening) are offered. In order to sharpen the image, the processor needs to
know local information around the area it is currently processing. For that purpose,
manufacturers may use a frame buffer which stores an entire frame, then applies the
processing, and does the scanout with delay. On a 60 Hz display, this would account
for at least 16.7 ms of latency alone. The latency is often even higher in some TVs,
which try to smooth motion by storing at least two frames and interpolating in
between those. For gaming displays, these methods are usually passed by, and if
buffering is needed, it can be limited to few pixel rows instead of the entire frame.

Adaptive vertical synchronization An LCD with Adaptive Sync3 can refresh at vary-
ing intervals. Each display has a minimum and maximum frequency. When the
display has finished a refresh cycle and there is no signal for the next refresh, the dis-
play will wait until a maximum waiting duration has expired. If at any point during
the waiting period new information gets sent to the display, it will immediately start
the scanout again. This allows the system providing the signal to determine at which
rate to refresh, rather than having to adjust to the display. If the system attempts
to refresh faster than the maximum or slower than the minimum refresh rate, it
will behave exactly like a monitor without adaptive synchronization. The benefit
for latency lie mainly in the system itself, as will be discussed in section 4.1.1.3.
Additionally though, the scanout always happens as fast as the maximum frequency

3A term used by VESA. NVIDIA: G-Sync, AMD: FreeSync

36 Chapter 4 Implementation details

allows, saving a bit of latency, i. e. a 48–144 Hz display being driven with 60 fps will
scan out each image in 6.9 ms.

Conclusion Similar to a controller, the latency cannot be estimated due to many
unknown factors that depend on the manufacturers choices. However, it is possible
to use external tools to measure the latency of a display. It is expected that the
equal monitors run the same code and use the same components and therefore have
the same latency. Online reviews with accurate latency measurements confirm this
assumption.

4.1.1.3 Computer

The latency in the computer can be split up into the parts of USB/wireless drivers
and OS handling the input device, the game calculating the game state changes
based on the inputs, the game rendering the visuals of what is happening in the
game, and buffers in between the steps and post rendering [WWW19].

USB The USB hardware on the PC has to handle the polling of the input device
as explained in section 4.1.1.1. When the input device sends data, there is a
transmission time based on the size of the report. Typically, with the speeds of USB
this should not be a relevant portion of time on the scale of total latency.4 When
data is received it will be handled by drivers and the OS component, both of which
could introduce delays by running a lot of code. On Windows, these are black boxes.
There is no reason to assume that they do add a relevant amount of latency. When
measuring the total latency present in a system and subtracting all the known factors,
there was less than 1 ms left which could possibly be assumed to be caused by the
OS and drivers (see section 4.1.2).

Windows window messages In Windows, the inputs get passed on to individual
windows through messages which have to be handled by a WindowProc callback
function. Usually a game engine will handle these inputs once per frame [89,
pp. 529–531], as does Rocket League. This means that during this time, fresh inputs
may be waiting for the start of the next frame. The average wait time in this step is
therefore 1

2fframe
, and the worst case 1

fframe
. There have been reports online of overfull

message queues when running games in exclusive full screen mode [WWW22]. The

4Plant et al. [95] measured a transmission time of 0.1 ms.

4.1 Measuring and estimating latency in Rocket League 37

game only gets a limited amount of messages per frame, so they start accumulating.
This can cause drops and additional delays. Attempts to replicate this issue in RL
failed.

Game engine fundamentals While some games are built from the ground up, many
modern games use a common engine that is licensed or developed in-house for
multiple games [89, pp. 31–37]. So does RL, using the Unreal Engine 3 [12]. The
engine handles the core game loop, where every frame can be subdivided into three
steps. First, the engine captures the inputs and processes different controllers to
give the developers a device independent action (tinput

5). Then the main gameplay
logic runs, which is defined by the game developer (tgame). Based on the new state
of the game world the engine renders the next frame. This involves both the CPU
(trender) and the GPU (tGPU). Once it is fully done, the frame can be presented to
the output device, and the next frame can be started. Each of the steps requires
processing time, which consequently means that the frame can only be displayed
with latency. The input handling is very simple and takes only a negligible amount
of time. The other parts will depend on the game details. In a multithreaded game
architecture the steps may be designed to be partially independent of each other
and thus the added latency ≤ tinput + tgame + trender + tGPU [96].

Game logic code For Rocket League this means handling the car input and stepping
the physics forward in time. In case the game is played online, there may be
additional steps required to send network packets and check and reconcile the state.
The graphics rendering step in Rocket League contains no extraordinary parts. The
overall processing time and therefore attributable latency of the frames is very much
dependent on the used hardware and graphics settings. It can be lower than 1 ms
for each frame on the fastest processors.

Rocket League has a factor specific to the game which can cause additional latency.
The physics of the game run at a fixed tick rate of 120 ticks per second. Since the
car’s movements themselves are tied to the physics, an update can only happen up
to 120 times a second. So when the game runs at 240 fps, the physics will only
get updated every second frame, and thus, there is a 50 % chance that there is an
additional frame of wait time until an action gets handled. The code to calculate
this additional delay is given in listing 4.1.

5tx is the time the PC needs to process x.

38 Chapter 4 Implementation details

1 def lag_through_ticks(frametime, vardiv=10, max_it=2001409):
2 ticktime = 1000/120 # 8.33 ms
3 lag_sum = 0
4 for i in range(0, max_it):
5 # random noise +- 1/(2*vardiv) to prevent alignment issues
6 noise = -1/(2*vardiv) + random.random()/vardiv
7 # calculate how current frame lines up with the physics ticks
8 mod = (noise + i*frametime) % ticktime
9 if mod < frametime:

10 # enough time has passed for another physics tick, so there is 0 additional
↪→ delay

11 continue
12 # calculate how long it takes until the next physics tick is generated
13 lag_sum += math.ceil((ticktime - mod) / frametime) * frametime
14
15 return lag_sum/max_it

Listing 4.1: Calculation of the average added latency caused by waiting for the next physics
tick (Python).

Pipelining and queues In order to get the maximum performance out of the CPU
and GPU, they should be able to be fully utilized at the same time. Since the GPU
needs to wait for the CPU steps before it can start its work, a pipeline is necessary to
fully utilize the GPU. That essentially means, once the CPU has calculated a frame
of gameplay logic, it won’t just do the rendering portion of the game loop, but it
will also start working on the next frame of inputs and game logic. Since the GPU
has to do the majority of the rendering work, the CPU will usually have enough
resources left to work on the next frame. As soon as the work on the new frame
begins, the inputs for that frame have to be captured and set in stone. This creates
a potential latency issue. If the render step of the pipeline takes longer than the
game logic step, there is a wait time for the frame where it cannot be rendered yet.
The frame is waiting in the render queue. The scenario can get even worse, as the
game starts working on yet another frame of gameplay logic before the previous
one has even started rendering. Therefore, a limit on the amount of pre-rendered
frames is necessary. In RL’s case this limit is two frames.6 This time, where the
frames are waiting in the render queue, is additional latency on top of the time
needed to produce the frame. So even though pipelining can increase the frame rate,
and that is beneficial to latency7, it may still increase overall latency. Purposeful
limiting of the frame rate in the right moment can therefore reduce the latency.
If the queue fills completely, the additional latency is 2

fframe
− tgame. A setting in

the Rocket League configuration files (OneFrameThreadLag=false) can make sure
there are never any additional frames in queue, reducing the worst case delay by
one frame at the potential cost of frame rate.

6Determined experimentally by forcing conditions that fill the render queue.
7See the paragraph on Windows window messages

4.1 Measuring and estimating latency in Rocket League 39

Frame buffers are the parts of the graphics memory which store the frames and
allow the monitor to read out the pixel information [89, pp. 663–664]. In the past,
some games used a technique called racing the beam in order to render the pixels
just before they get transferred to the monitor [97]. This has the advantage of not
requiring a frame buffer, which wasn’t feasible due to required amount of memory.
The entire idea of pipelines and the game loop doesn’t apply then, which allows
for very low latencies. It also has a significant disadvantage. Doing more complex
calculations is only possible once per frame as opposed to once per pixel or pixel
row. While the engine is working on rendering a frame, the buffer it is rendering
to – called back buffer – is in an unfinished state that should not be displayed [98,
p. 300]. The monitor, however, continually requires pixel data to read through the
connection. For that, there exists the front buffer which contains the newest finished
image. When an image is done rendering in the back buffer, a page flip is done
which turns the front buffer into the back buffer and vice versa. As long as the
page flip is done immediately, the latency of the buffer is already accounted for as
trender.

VSync When doing the page flip immediately, the monitor may be reading out
any portion of the frame buffer at that moment. Thus, the monitor may display
half of the previous and half of the newest frame, an artifact known as tearing [89,
pp. 663–664]. Delaying the page flip until the vertical blanking of the monitor
prevents this issue. This is known as VSync. There are two types of VSync that affect
the latency in fundamentally different ways. One uses three buffers in total, two
of which are back buffers that get rendered to continuously, while on every VSync
signal the newest finished frame gets flipped to the front buffer [89, p. 664].8 This
means that any frame, after it’s done rendering, has to wait a random time from
0 ms to 1

f . If the frame rate is synchronized with the refresh rate of the monitor,
the latency stays constant for the random value it started out at. Any deviation
will cause varying latency in the aforementioned interval. With double buffered
VSync, which is also known as regular VSync, rendering cannot continue until the
single back buffer has been emptied. Thus, if the computer is capable of generating
more frames than the refresh rate of the monitor, the game will end up filling the
render queue to the maximum. That will result in the latency increase that comes
with a full render queue. Additionally, the wait for the next VSync guarantees an
extra refresh cycle of latency regardless of how quickly the render finishes. If the
computer is producing frames at a lower rate than the monitor is capable of, the

8The method is known under the terms Fast Sync (NVIDIA) and Enhanced Sync (AMD). Sometimes it
is referred to as triple buffering, but that can also refer to a method that is functionally identical to
double buffering with an additional buffer.

40 Chapter 4 Implementation details

render queue does not fill. Limiting the frame rate can therefore also reduce the
latency when using VSync. The downside is uneven frame pacing, which Adaptive
Sync (see section 4.1.1.2) can prevent, along with preventing extra latency by not
having to wait for the next refresh cycle. It should be noted that the same average
latency can be achieved with a non-Adaptive Sync monitor by deactivating VSync.
This is the option that the majority of competitive gamers choose.

4.1.2 Measuring Rocket League latency

In order to estimate the latency present on a participant’s PC, calibration and
validation of the model is necessary. For this purpose, I created a measuring method
similar to Schmid and Wimmer’s [35] (cf. section 2.1). An Arduino Due set up as a
USB game controller sends inputs to the PC and also measures the final response
on the screen using a set of photodiodes in series. They are attached to two
breadboards placed in front of the screen in a cardboard box to shield off extraneous
light. The photodiodes span the entire vertical range of the screen in order to
allow the detection of a change at any point during scanout process of the display.
This minimizes the variance introduced in the measurement by the scanout of the
display, and in turn a more accurate estimate of the game’s factors. The Arduino was
also set to use 1000 Hz USB polling for the same purpose, causing at most 1 ms of
variance. The response of photodiodes is fast enough not to matter on the timescale
of milliseconds [99]. Using photodiodes in this context means that the device can
only detect simple changes in brightness. In order to measure the latency in Rocket
League, I devised a special map with a black and white background. By swiveling
the camera, the game will then switch from white to black where the photodiodes
were placed. One additional caveat regarding the camera has to be addressed. By
default, the game smoothly moves the camera across a few frames, even at the
highest sensitivity setting. By editing the memory, the value can be set one hundred
times higher than allowed in the menu, removing any delay caused by smoothing.

The exact measuring process is as follows. The Arduino stores the the start time
found by calling micros() 9, and then immediately uses the Arduino Joystick Library
[WWW23] to send the button state. Following that, it does an analogRead(diode)
to determine the current brightness, which has to be above a minimum threshold
in order for the measurement to be considered valid. If it passes, the Arduino runs
analog measurements at a rate of about 375 kHz. The analog measurement of the

9Resolution: 4 µs

4.1 Measuring and estimating latency in Rocket League 41

Fig. 4.1.: Measurement setup showing the Arduino with a breadboard and display. The
controller is connected to trigger analog input. The monitor shows the custom
black and white map. The cardboard box in front of the monitor can be seen on
the right. It houses the photodiodes.

photodiodes has a significant amount of noise. When the measured value drops
below the treshold which is 250 below the starting point (12-bit ADC) – about 20 %
of the full transition – the end time gets measured, and the difference to the start is
considered the end-to-end latency.

I developed the measurement setup in 2018 [WWW24] and compared it to Rejhon’s
[WWW14] method using a Casio Exilim EX-FH20 1000 fps camera and a RAZER Naga
Original mouse.10 The testing device measured 1.25 ms more latency, with a 95 %
confidence interval of 1.03–1.48 ms. Of this difference 0.2 ms can be attributed to
the threshold, based on measurements of the pixel response times of the monitor by
O’Keeffe et al. [WWW21]. Even though the apparatus uses 11 photodiodes vertically
across the screen, 1

11 of the scanout is still 0.63 ms at 144 Hz, and assuming a
randomized first response, the additional delay in the measurement will be half of
that. Since the photodiodes don’t take a perfect one pixel sample, the attributable
portion of this effect is more likely to be in the range of 0.1–0.3 ms. The remaining
difference doesn’t have a certain cause. I assume that it is caused by the human
analysis in the camera based method, the camera’s rolling shutter, and random
variance.

In the most stable scenario – which will be considered the baseline from now on –
the game runs at 1000 fps. The measurement shows an extremely low end-to-end
latency (excluding scanout) of 3.78 ms, with a standard deviation of 0.35 ms. The

10How an external input device can be used with the testing device is explained in section 4.1.4.

42 Chapter 4 Implementation details

same measurements were done at a multitude of graphics settings and resolutions to
create different loads. Additionally, some samples were collected using the camera
based method on the real Rocket League map used in the experiment, in order to
compare. This was all done for the next step, which uses the data to calibrate the
estimation.

4.1.3 Estimating game latency

This section shows how to put the theory together to estimate the average latency.
Collected for that purpose, were the following averages:

• frame duration (tframe)

• CPU game logic processing time (tgame)

• CPU render processing time (trender)

• GPU render processing time (tGPU)

• frame time lower bound (tcap)

I found a constant not easily attributable 0.7 ms of latency in my measurements. I
assume this to be driver or Windows related latency. The first part of the latency
that I have an estimate for is where the input has to wait to be captured by the
next frame 1

2 tframe. Then the game logic gets calculated tgame
11. The rendering is

both dependent on the CPU and GPU. There is a large overlap though, and the best
approximation was simply using tGPU for their combined time. The most difficult part
is detecting if frames are getting queued. The situation where the buffer fills is when
the GPU is the bottleneck. This was reasonably predictable based on the collected
data. When the computer isn’t reaching the set frame limit tcap and tgame < 0.95·tGPU,
the GPU is assumed to be the bottleneck. On the local computer, this rule has always
correctly identified the situation in a variety of tests at low and high resolutions and
graphics settings with different frame limits. However, when capping the frame rate
at about the limit of what the GPU can produce, then inconsistent frame times lead
to the buffer being neither full nor empty. Then, the prediction can be off by a full
frame time. Lastly, anyone running the game at above 120 fps is affected by the
latency caused by the limited physics tick rate ttick (see section 4.1.1.3).

11In the data gathered from RL, tgame includes tinput.

4.1 Measuring and estimating latency in Rocket League 43

Everything combined gives the equation in 2 parts:

tqueue =

(1 + OneFrameThreadLag) · tframe − tgame if tcap
tframe

< 0.98 ∧ tgame
tGPU

< 0.95

0 else

(4.1)

tPC = 0.7 ms + 0.5tframe + tgame + ttick + tGPU + tqueue (4.2)

When VSync is enabled, the formula has to be adapted. If the user doesn’t manually
cap the frame rate below the refresh rate, the buffer will fill up. Additionally, after
finishing the render, the GPU still has to wait until the next vertical blanking interval
to display the frame (as explained in section 4.1.1.3. Therefore, tqueue has to be
adapted the following way:

tv_queue = (1 + OneFrameThreadLag) · tframe − tgame + trefresh − tGPU (4.3)

If the user does use the frame limiter, the queue will only fill under the same
conditions as with VSync off. Without an adaptive sync monitor, there is still an
average waiting period of half a refresh to align the page flip with the next vertical
blank.

tvcap_queue = tqueue +

0 if Adaptive Sync

0.5trefresh else
(4.4)

tv_queue and tvcap_queue take the place of tqueue in equation (4.2) when the partici-
pant’s settings show they are on. They were listed separately to keep the equation
readable.

4.1.4 Estimating input device latency

The latency of input devices has been investigated many times in the past. The
sources which have high quality data for some of the game controllers used by the
participants are Petit [WWW15] and Wimmer et al. [85]. However, neither testing
method involves Windows and Rocket League, which are factors that could introduce
input device dependent software latencies that the methods would not account for.
By using my own testing method, I can make sure there are no such effects, and also
test more of the controllers used by the participants.

44 Chapter 4 Implementation details

In order to adapt the Arduino based testing method for controllers, one change has
to be made. Instead of the Arduino acting as a game controller and sending inputs
directly to the PC, it uses the digital I/O to flip the state of a button or analog axis on
the controller to be tested. This requires opening up the controller and sometimes
soldering in order to attach wires to the internal circuits. The process is the same as
described by Petit [WWW15] and Wimmer et al. [85]. The difference to those methods
is that the response will get measured on screen. The measurement includes all the
PC and display latency. In order to know which part of the latency is caused by the
controller, I compare the most stable baseline test to the same scenario with the
controller in the chain. The difference is caused by the controller.

Using this method, 79 % of the participants’ controllers were measured. For all
controllers also tested by Petit [WWW15] and Wimmer et al. [85] the measurement
results are all within 0.5 ms. This validates the method and shows no signs of the
controllers behaving differently on Windows and Rocket League.

In order to determine the controller used by the participant, input device information
was read out via the hidsdi.h header [100] and listed to them in the post-experiment
survey. They were then told to pick which device they used, or note down the correct
name if it did not show up on the list. When analyzing the data post experiment,
the device and connection type was manually identified based on the product ID,
manufacturer ID, and provided name.

4.1.5 Estimating display input latency

Unlike the controllers, there were a lot more different monitors in use by the
participants. Testing them all personally is not feasible and thankfully, there are
several monitor reviewers with high quality latency data.

Similar to the process with the controllers, monitor information was read out from
the WMI Core Provider [101] and listed to the participant. If they did not see
their model, they could provide their own name. The manual identification of the
monitors was a lot more involved. Unfortunately, the information stored in the
Extended Display Identification Data (EDID) of the displays is not always unique
for some manufacturers. When identifying a singular model was impossible, the
participant’s data was not used in the dataset with latency estimation. I cannot
guarantee with certainty that no monitor was identified incorrectly. The monitor
and controller data along with their identified names are public for the purposes of
verification [WWW25].

4.1 Measuring and estimating latency in Rocket League 45

Measuring latency can be done in many ways as discussed in section 2.1. Those
methods may result in different measurements, which is why those differences need
to be accounted for if any comparison is to be attempted. rtings.com, a reviewer
with a large database of monitors uses a measuring method very similar to mine
[WWW26]. There are only two differences. The measurement is done in a custom
program instead of Rocket League, and the measurement area covers only a single
spot in the center of the screen. The former should only improve consistency and
the latter can be easily accounted for. It means that the average scanout latency
is included in the measurement, which is part of the total latency anyway. When
comparing three monitors available to my testing, they match to under 0.3 ms with
the expected results found by rtings.com. Due to having the largest high quality
sample size of monitor latencies measurements, the site was used as the primary
resource whenever a specific monitor was in their dataset.

The Leo Bodnar LagTester [WWW27] is another testing device with very similar capabil-
ities. It does not need a computer, but it only works at 60 Hz refresh rates. rtings.com
used the device prior to creating their own, and stated that the results were within
1 ms of their new method. I found 24 monitors to compare between rtings.com
and the Leo Bodnar method. The difference between the two is at most 1.83 ms,
on average 0.51 ms, and the standard deviation is 0.72 ms. This is relatively minor,
especially considering that the majority of Leo Bodnar based results were rounded
to the nearest millisecond. For the estimation purposes, I do not assume that single
millisecond accuracy is possible, and consider this variance acceptable. The sources
for Leo Bodnar based data were displaylag.com, pcmag.com, and prad.de.

Hardware Unboxed updated their testing in 2019 to a method very similar to
rtings.com [WWW28]. In a 22 monitor comparison with rtings.com, the difference is
at most 1.98 ms, on average 0.50 ms, and the standard deviation is 0.71 ms. I use
this source on the same criteria stated previous paragraph.

tftcentral.co.uk and pcmonitors.info use a measuring method called SMTT 2.0
[WWW29]. The method works by displaying timer information on two monitors at
once. The timers are placed across the entire vertical range of the screen. The
difference between the two newest timers on each screen is the difference in latency
between the two monitors. This can be determined with a photo camera with a
global or fast rolling shutter. By comparing to a known display latency such as that
of a CRT, the absolute latency can be determined. Unlike the previous methods,
scanout latency has a negligible effect on the measurement. The effect of pixel
response times is dependent on the human looking at the picture of the timers. In
order to account for these differences, I used linear regression on 21 and 19 monitors

46 Chapter 4 Implementation details

https://www.rtings.com/
https://www.rtings.com/
https://www.rtings.com/
https://www.rtings.com/
https://displaylag.com/
https://www.pcmag.com/
https://www.prad.de/
https://www.rtings.com/
https://www.rtings.com/
https://tftcentral.co.uk/
https://pcmonitors.info/

found on both the respective sites and rtings.com. The linear regression uses the
duration of a refresh (trefresh) as the one independent variable. After correcting with
the linear regression, the deviations are at most 3.84 and 2.06 ms, on average 1.00
and 0.60 ms, and the standard deviations are 1.41 and 0.89 ms.

More sources were considered. They were disregarded either because of an intrans-
parent or inaccurate testing method.

4.1.6 Total latency estimation

The idea of the total latency estimation is very simple. It is simply given by adding
the three parts of latency together.

ttotal = tcontroller + tPC + tmonitor (4.5)

The accuracy of the estimation is expected to be limited, as shown by e. g. the
monitor alone being off by over 3 ms. There is also a recently discovered bug that
can cause 4 ms of additional latency on select controller mainboard combinations.
A firmware change in a controller or monitor happens rather infrequently but can
potentially change the latency too. The biggest inaccuracy possible would be due
to frames queuing up and the estimation not predicting this. However, in the
experiment, all participants with a frame rate below a limit had to be removed in
order for the method of added artificial latency to function correctly. This happens
to also limit the extent to which predictions may be wrong. I cannot guarantee
that there is not a single result with 15 ms of inaccuracy in the dataset. However, I
do not expect this to be common. In the large sample size, this noise is likely not
important.

In order to validate the estimation method, I reached out to participants who signed
up for a newsletter regarding the experiment. I asked them whether they had a
high frame rate camera (common in iPhones and high-end Android phones) and
were willing to help me gather extra data. The idea was to compare the estimated
latency to real measurements. The method involved them recording their screen
and controller while pressing a button. This is an inaccurate version of Rejhon’s
[WWW14] method, as it is difficult to see when the button activates without an LED. I
analyzed the videos myself to minimize between participant bias. There were 10
volunteers, but unfortunately only three had an estimated latency in the dataset.
At first, one of the videos showed 40 ms higher than expected latency. I was able
to identify that the participant had turned on VSync since the experiment. Once

4.1 Measuring and estimating latency in Rocket League 47

https://www.rtings.com/

they had disabled the setting, the estimate was off by at most 5.5± 0.9 ms. When
trying the same measuring method on my own computer, I found that I also got
4 ms less latency than my previous measurements. This means it was most likely an
inaccuracy of the measurement method. Furthermore, I asked the helpers to test at
both low and high graphics settings like in the experiment. That way the difference
between the two estimations should be the same as the difference between the two
measurements regardless of the constant error of the method. The biggest error
between the expected and measured difference was 2.8± 1.2 ms. This is not a large
enough sample size for it to accurately predict the error of the estimation, but it
demonstrated that a change like the VSync setting can be caught.

4.2 Experiment implementation

The experiment was implemented as a BakkesMod12 plugin using C++. The user
interface was created with Dear ImGui [WWW30] as an overlay on top of the game.
Some aspects of the modding process required reverse engineered proprietary game
code and data structures. Based on prior unrelated communication, it is against
the will of the developers to have this information public. Therefore, the implemen-
tation can’t be publicized and there will only be portions of the implementation
explained.

4.2.1 Adding artificial latency

Adding artificial latency can be done at any step of the input-output chain. Since
I don’t have access to the participants monitors and controllers, it has to be done
in software. There are multiple options to introduce the delay here. Options at
the driver level of the inputs or frame buffers may be possible but unnecessarily
complicated when modding the game directly is possible.

One way to delay inputs is frame by frame; though, if the frame times are for
example 10 ms, and 15 ms of latency is supposed to be added, then neither one nor
two frames of delay would result in the desired latency. While it is possible to match
an average of 15 ms by randomly switching between one and two frames with a
50 % chance of each, this would have an impact on the distribution of the latency.
The thesis only focuses on average latency, as estimation of the exact distribution

12User created Rocket League mod with an open API to allow developers to create their own mods for
the game

48 Chapter 4 Implementation details

would be impossible. However, for the purposes of the added latency, which is
the most important factor analyzed in the experiment, it is preferable that it does
shift the entire distribution of possible latencies without changing it. That ensures
that any measured effect isn’t actually the effect of changing variance, but that of
changed average latency. The way to achieve this feat is through the way Rocket
League handles physics with a fixed time step. By delaying inputs by an integer
amount of physics steps, the additional delay is always constant, and the distribution
is conserved at any frame rate ≥ 120 fps. The reason for this lower bound is that
the physics simulation runs at rate of 120 steps per second. When the frame rate is
below that value, multiple physics steps will be run in a single frame and use the
same input from that frame. This might then result in no additional delay at all
or less delay than intended. Therefore, submissions had to be removed due to not
reaching the average required frame rate (see chapter 5).

The code in listing 4.2 demonstrates how the inputs get stored in a FIFO queue and re-
played when the amount of integer steps of desired latency, given by current_lat ,
is reached.

1 std::queue<ControllerInput> store;
2
3 void OnSetVehicleInput(CarWrapper caller, void* params, std::string eventName)
4 {
5 ControllerInput* input = static_cast<ControllerInput*>(params);
6 store.push(ControllerInput(*input));
7 while (store.size() > current_lat) // clears itself if it’s too full for the

↪→ setting
8 {
9 *input = store.front();

10 store.pop();
11 }
12 }

Listing 4.2: How artificial latency was added in a function that manipulates the inputs
before each physics step (C++).

4.2.2 Score evaluation

An important part of evaluating player performance is measuring how good a shot.
A single stat like distance to the goal only values a single aspect of the shot. A weak
shot would be easier to save for a defender, but this will only matter if the ball is
even shot on target. I created a compound metric called score in order to have
a better numerical estimate of how good a shot is. The first part of the equation
is simply about not touching the ball at all. During the experiment, whenever the
player does not make contact with the ball, the shot is reset in order to not have

4.2 Experiment implementation 49

missing data for shot speed and accuracy. Every miss of the ball subtracts 2 points
from the score (misses). In order to give points based on the precision of the shot, I
use a variation of the actual difference of the ball (~b) to the center of the goal (~g).

distmod =

∥∥∥∥∥∥∥∥∥

1 0 0

0 1 0

0 0 0.5

(~b− ~g)
∥∥∥∥∥∥∥∥∥ (4.6)

The vertical distance is halved before calculating the magnitude of the vector. This
is done because even though the goal may be missed by shooting too high, there
is a backboard which bounces it back to the team on offense. Helped by gravity,
it often leads to beneficial situations where a goal can be scored regardless. In
order to give higher points for smaller distances, the inverse of the distance is used
and clamped to a minimum of 50 to prevent the value from going to infinity. The
minimum is an educated guess for an upper limit of what is humanly possible in
terms of precision. Anything more precise is likely just random variation. In order to
get less extreme values, the logarithm is applied. The maximum distance of 2500, at
which the addition to the score becomes 0, is 2.8 times the distance from the center
of the goal to the goal post [WWW31]. This will be so far off that the ball is no longer
in a scorable position after bouncing off the backboard.

Fig. 4.2.: Graphic showing the size of the goal and the distance at which the score is 0.

50 Chapter 4 Implementation details

score =
(∑
misses

−2
)

+ log2

(2500
max (2500,min (distmod, 50))

)

+ goal ·
(

1 + max (0, vy − 2000)
600

)
(4.7)

The remaining factor is only active if the shot attempt results in a goal. This gives
one point by default, and additional points based on the ball velocity in the direction
of the goal (vy). There is a minimum velocity to gain points because the save for the
defender will not be any more difficult depending on whether the ball is rolling slow
or very slow.

4.2.3 Miscellaneous

Due to changing the participant’s graphics and BakkesMod settings during the exper-
iment, they have to be backed up safely prior, and restored once the experiment is
finished, aborted, or the game crashes. When starting, the settings are stored as plain
text files as to allow manual restoration of settings in case the automatic part fails.
After the files are created, there is a three-second timer before the experiment starts.
This is an extra precaution against antivirus deletions or unexpected corruption of
the files. At the end of the timer, the files get reread from disk, and using a hash
function, it is assured that they are still correct. Only then, can the experiment
actually begin safely. After the files are used to restore the settings, they get deleted.
In case of a crash during the experiment, the files will still exist when the game gets
restarted, and the settings will get restored.

In order to collect the data from the experiment, I use a virtual server in a datacenter
to maximize uptime. The server listens on one port and stores the content of every
post request in a file. At the end of the experiment, the client gathers all the relevant
data into a string buffer in the JSON format. This buffer gets encrypted using the
OpenSSL library envelope (evp.h) asymmetric encryption, using AES-256 for the
symmetric part of the encryption. The private key for the data is not stored on
the server or anywhere online. It is only used offline to decrypt the data after
downloading it from the server. Using the libcurl library, the client establishes an
SSL connection to the server and sends the already encrypted information in a post
request. The server stores no additional information.

4.2 Experiment implementation 51

Results 5
In the period of 28th August–15th September 2020 where the experiment was open,
there were 763 successful submissions. 16 were second submissions from the same
people, and therefore removed. For the remaining 747, the monitor and controller
data was exported, manually identified, and annotated. 666 used a controller as the
input device, of which 587 were successfully identified and had available latency
data. Independently, for 352 of the participants, monitors were identified and
latency data obtained. The cross-section of valid controller and monitor data leaves
285 participants. Further 33 participants were removed for one of the following
reasons:

• The VSync method was not able to be determined. Their data showed that
VSync was not limiting the frame rate despite being activated in the settings,
which can either mean it was forced off or set to Fast/Enhanced Sync in the
driver.

• They had a monitor with an aspect ratio other than 16 : 9 or 16 : 10. It was later
determined that aspect ratio might have a significant effect on the planned
FOV tests.

• The frame rate was too low,1 which makes the method used to add artificial
latency behave differently.

• They changed the graphics settings during the experiment, despite being told
not to do so.

• They reported in the survey that they were sitting 5 and 8 m away from a small
monitor, which was assumed to be a mistake.

• They had no valid skill rating.

The valid dataset with baseline latency estimation is therefore of size 252. When
disregarding the baseline latency and monitor related FOV, the valid dataset is 635
submissions large.

1The reason is explained in section 4.2.1

53

The chosen significance level is α = .05. All ± intervals and error bars reported are
95 % confidence intervals. The effect size for the ANOVA is given by η2

p, and for
pairwise comparisons Cohen’s d is reported.

5.1 Participants

The participants geometric mean age is 23 y, and the standard deviation is 5.74 y. 2
participants chose female, 3 chose other, 4 did not answer, and the remaining 246
chose male. This is not dissimilar to the analytics of the YouTube channel on which
the experiment was advertised.

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400
0 %

5 %

10 %

15 %

Matchmaking Rating (MMR)

Po
rt

io
n

of
Pl

ay
er

s
at

R
at

in
g

Experiment Participants
Global Distribution [WWW32]

Fig. 5.1.: Histogram of the matchmaking rating (MMR) of the participants compared to the
general playerbase of the game. The MMR serves as a good approximation of the
skill of the participants.

The participants are highly experienced in Rocket League according to the self-
reported number of hours played. The geometric mean is 2000 h with a standard
deviation of 1604 h. The values lie between 100 and 9000 h. For this experience,
the participants are significantly above average in skill, achieving a mean rating
of 1455 in RL’s ranked match making (311 standard deviation). This puts the
average participant in the top 2 % of the playerbase [WWW32]. The average player
of Rocket League is about three standard deviations below the average participant.
9 participants self-reported as professional players. In order to utilize the player
skill as a fixed factor in the repeated measures model, the variable was split into 5
groups with an MMR range of 360 each (skill_group). The lowest group is open
to (−∞, 900] rating and contains players up to the top 75th percentile (pctl.) of the
general playerbase, matching the average RL player’s skill. The other groups are
estimated to therefore contain only players of the following percentiles and above:
75th, 93rd, 99.5th and 99.99th. The geometric mean hours of RL experience for
each of the categories are 589, 1156, 1981, 3365, and 5939 h.

54 Chapter 5 Results

75 93 99.599.99
0

2000

4000

6000

8000

MMR Percentile (skill_group)

H
ou

rs
of

R
L

Ex
pe

ri
en

ce

Fig. 5.2.: Hours of experience by skill group.

0 20 40 60 80
0 %

10 %

20 %

30 %

Estimated Baseline Latency [ms]

Po
rt

io
n

of
Pl

ay
er

s
w

it
h
x

La
te

nc
y

Fig. 5.3.: Histogram of the estimated
average baseline end-to-end
latency of the participants.

The estimated baseline end-to-end latency for the participants has a geometric
mean of 33.43 ms and a standard deviation of 7.62 ms. The values range from
18.31 to 83.68 ms. The continuous variable is again converted into a fixed factor
(base_lat_group), each grouping spanning 8.33 ms in order to match the smallest
step size of the added latency category. Latency of 43 ms and up are combined into
one group, as there are very few datapoints above. This group has a geometric mean
estimated latency of 52.17 ms.

The horizontal field of view is calculated based on monitor size and self-reported
seating distance. The participants’ geometric mean FOV is 51.31° with a standard
deviation of 15.17°. They are split into two groups (peripheral_vision). One
which only has the monitor within the near peripheral vision (<60°), and the other
where the edges of the monitor reach into the mid peripheral vision. This means that
the hypothesis H6 has to be narrowed as it can only be tested for the mid peripheral
vision and not the far peripheral vision.

The larger dataset without latency estimation is very similar. Regarding gender, 13
gave no answer, 6 chose other, 5 chose female, and 611 chose male. The geometric
mean age is 22 y and a standard deviation of 5.86 y. The geometric mean hours
of experience are lower at 1787 h, which is mostly due to the lowest skill group
quadrupling in size. Within the skill groups, the experience is only different for the
highest group. The geometric mean hours for the skill groups are 553, 1161, 1956,
3232, and 5524 h.

5.1 Participants 55

5.2 Effects on performance

I ran a General Linear Model (GLM) repeated measures doubly multivariate
ANOVA with IBM SPSS Statistics 27 (SPSS). The response variables were score ,
dist_to_goal , shot_vel , goal_scored , ball_misses , and ball_touches .
dist_to_goal measures the distance between the ball and the center of the goal
at the point where it is closest to the goal line. The lower the distance is, the more
precise the player was. shot_vel measures the velocity of the ball at the same time
as dist_to_goal . goal_scored is 1 when the shot resulted in a goal, and 0 other-
wise. ball_misses gives the number of times the player has not made contact with
the ball, in which case the shot is restarted to avoid missing data. ball_touches
gives the number of touches the player had on the ball in the attempt. score is
a custom compound metric created to approximate how effective the shot would
be in an actual game (see section 4.2.2). The within-subjects model is graphics ,
added_lat , shot , graphics*added_lat , shot*added_lat . The graphics vari-

able has three possible values. One which uses the user’s own graphics settings, one
which turns every effect to the minimum, and one which turns every effect to the
maximum. added_lat refers to the five added latency conditions 0.00, 8.33, 16.67,
33.33, and 50.00 ms. The shot variable gives one of the five shots described in
appendix A.1. The between-subjects model is skill_group , peripheral_vision ,
base_lat_group . The variables and groupings are explained in the previous section

(5.1). All interactions of the within- and between-subjects model are automatically
included in the analysis by SPSS.

In the multivariate results, the factors base_lat_group and peripheral_vision
show no significant effects on their own, nor with any of the interactions with
the within-subjects model. Therefore, I reject hypothesis H6 for the performance
response variables. There is no evidence that the mid peripheral vision has an
interaction effect with latency on player performance. Since all effects that require
monitor data and estimated latency are not significant, the larger dataset can be
used to analyze the other factors. Significant differences to the smaller dataset will
be noted. The sample size for each of the skill groups subsequently becomes 50,
143, 303, 118, and 21.

For the multivariate results of the larger dataset, the random subject intercept has
a large effect (F (6, 625) = 136830.73, p < .001, η2

p = .999). The skill_group
also has a significant effect on the player’s performance (F (24, 2512) = 19.00, p <
.001, η2

p = .154). The within-subjects main effects are all significant (p < 0.001).2

2 graphics as a main effect and interaction is not significant in the smaller dataset (p ≥ .097).

56 Chapter 5 Results

Their interactions with the skill_group was too (p ≤ .012). The interaction
between graphics and added_lat is not significant (F (48, 583) = .866, p = .727).
I therefore reject hypothesis H5 for the performance response of players. There
are significant interaction effects between the three main within-subjects factors
and the player skill group. The variables added_lat and shot have a significant
interaction effect, suggesting that the type of shot makes a difference in how the
player is affected by latency. All three-way interaction effects are not significant.

Post-hoc univariate analysis shows that there is a significant effect of skill_group
on every response variable tested with varying effect sizes. Pairwise comparison
using Games–Howell test shows all groups to be significantly different from one
another (p ≤ .001), except the highest two pairs on all metrics but the touches on
the ball. On this metric, the two lowest skill groups are significantly different from
the two highest groups.

The sphericity assumption is violated by shot and added_lat effects for some
response variables. It was corrected for with the Greenhouse–Geisser (G–G) correction
and Huynh–Feldt (H–F) for when ε < 0.75 [102, p. 84].

In the post-hoc univariate ANOVAs the main effect of added_lat is significant for
every response variable except ball_touches . The effect sizes η2

p are .122 for
score and .120 for shot_vel . The other variables show a smaller effect at .072

for dist_to_goal and .041 for goal_scored and ball_misses . Using Bonferroni
corrected pairwise comparisons shows that the results for the 0, 8.33, and 16.67 ms
conditions do not significantly differ for any of the response variables. At 33.33 and
50.00 ms most pairwise comparisons are statistically significant.3 In every case the
increase of latency results in a degradation of performance (cf. table 5.1), and I
consequently accept hypothesis H1.

The univariate results for the effect of shot are statistically significant for all
response variables (p < .001). There are only three pairwise Bonferroni corrected
comparisons that are not significant.3 Therefore, the different shots chosen are all
significantly different on most response variables.

The final main effect graphics is statistically significant on the response variables
ball_misses (F (2, 1260) = 13.72, p < .001, η2

p = .021) and score (F (2, 1260) =
4.54, p = .011, η2

p = .007). Pairwise Bonferroni corrected comparisons show that for
both response variables there is only a significant difference for the low graphics

3As expected, the smaller dataset has fewer comparisons with a significant difference. The trend is
the same, but the sample size is smaller.

5.2 Effects on performance 57

Response Variable Cohen’s d

33 ms 50 ms

score -.077 -.200

dist_to_goal .042 .136

shot_vel -.058 -.142

goal_scored -.029 -.105

ball_misses .058 .120

Tab. 5.1.: Effect size of added_lat
for each response vari-
able.

0 10 20 30 40 50

3.6

3.8

4

added_lat [ms]

sc
or

e

Fig. 5.4.: Average score lowers with additional la-
tency. Error bars denote 95 % confidence
interval.

condition compared to the user’s default and high graphics. Players miss more at
the low graphics settings and consequently score less points (d = .035,−.018).

The interaction effects between skill_group and added_lat is significant only
for the response variable shot_vel (F (16, 2520) = 3.10, p < .001, η2

p = .019). The
differences between the skill groups getting affected by 33.33 and 50.00 ms of added
latency are shown in table 5.2 (cf. figure 5.5). The effect size of added_lat grows
with increased skill. Therefore, I accept hypothesis H4 for the response variable
shot_vel .

shot_vel

skill_group 33 ms 50 ms

p d % p d %

< 75th 1.000 -.019 -.718 .034 -.071 -2.749

75th–93rd .367 -.030 -1.051 <.001 -.110 -3.930

93rd–99.5th <.001 -.068 -2.291 <.001 -.158 -5.306

99.5th–99.99th <.001 -.076 -2.440 <.001 -.168 -5.444

> 99.99th .025 -.108 -3.390 <.001 -.211 -6.526

Tab. 5.2.: Reduction of the average shot velocity when with added latency, split by the skill
groups. Results given are the Bonferroni corrected p-values, the effect size as
Cohen’s d, and the percentage reduction compared to no added latency.

The interaction between shot and skill_group is also significant for all response
variables (p < .001). The effect sizes η2

p are largest for score , dist_to_goal , and
shot_vel : .166, .111, and .120. The biggest difference is on shot number 4, which

high ranked players are by large margins more likely to touch, score, and shoot with
high velocity. This is most evident in the compound metric score (cf. figure 5.6).

58 Chapter 5 Results

75th 93rd 99.5th 99.99th

2000

2200

2400

2600

2800

MMR Percentile (skill_group)

sh
ot

_v
el

[g
am

e
un

it
s]

added_lat
0 ms
8 ms
17 ms
33 ms
50 ms

Fig. 5.5.: Average shot velocity is more affected by added latency as the player skill increases.
Error bars denote 95 % confidence interval.

75th 93rd 99.5th 99.99th

1

2

3

4

5

6

MMR Percentile (skill_group)

sc
or

e

shot
1
2
3
4
5

Fig. 5.6.: Player skill has a different effect on the average score of each shot. Error bars
denote 95 % confidence interval.

5.2 Effects on performance 59

75 93 99.5 99.99
0

0.1

0.2

0.3

0.4

MMR Percentile (skill_group)

ba
ll

_m
is

se
s

graphics
User
Min
Max

Fig. 5.7.: The two lowest skill groups miss the
ball significantly more often with
low graphics settings. There is no
significant difference for the groups
of higher skill. Error bars denote
95 % confidence interval.

There is a small but significant effect for
the interaction between graphics and
skill_group on the response variables
ball_misses (F (8, 1260) = 2.68, p =
.006, η2

p = .017) and ball_touches
(F (8, 1260) = 2.91, p = .003, η2

p = .018).
The trend shows low graphics increas-
ing misses for lower ranked players,
with the difference decreasing up un-
til the second-highest skill group (cf.
figure 5.7). The highest skill group
does not follow this trend, but when us-
ing Bonferroni corrected pairwise com-
parisons the difference is not statisti-
cally significant (p = .331, .235) unlike
the lowest two skill groups (p ≤ .015).
No trend is visible on the metric of
ball_touches .

The interaction of added_lat and shot has a significant effect on all response
variables (p ≤ .005, η2

p ≤ .011). Shot 5 is least affected by additional latency while
the other shots each show the biggest difference depending on the response variable
(cf. figure 5.8).

Response Variable Cohen’s d with 50 ms for Shot #

1 2 3 4 5

score -.238 -.376 -.220 -.194 -.070

dist_to_goal .104 .276 .220 .073 .069

shot_vel -.345 -.292 -.181 -.091 -.200

goal_scored -.153 -.207 -.234 -.031 .021

ball_misses .118 .067 .076 .246 .061

Tab. 5.3.: Effect size (Cohen’s d) varies greatly between shots, comparing 50 to 0 ms of
added latency for each response variable.

60 Chapter 5 Results

−5 0 5 10 15 20 25 30 35 40 45 50 55

80 %

85 %

90 %

95 %

100 %

105 %

added_lat [ms]

N
or

m
al

iz
ed

sc
or

e

shot
1
2
3
4
5

Fig. 5.8.: The normalized score demonstrates how the shots are affected differently by
additional latency. Error bars denote 95 % confidence interval; faded for visibility.

5.2 Effects on performance 61

5.3 Effects on perception

I ran a GLM repeated measures ANOVA with SPSS. The only response vari-
able is perceived_lat which is the participant’s response between 0 and 6
on the survey displayed after every set of five shots (see figure 3.1). The
rest of the model is the same, with the exception that the dependent variable
shot does not exist. Therefore, the within-subjects model is then graphics ,
added_lat , graphics*added_lat . The between-subjects model is skill_group ,
peripheral_vision , base_lat_group . All interactions of the within and between-
subjects model are automatically included in the analysis by SPSS.

The factors base_lat_group and peripheral_vision show no significant effect
on the perception of latency on their own, nor with any of the interactions with
the within-subjects model. I consequently reject hypothesis H6 for the perception
of latency in the mid peripheral vision. Since all effects that require monitor data
and estimated latency are not significant, the larger dataset can be used to analyze
the other factors. Significant differences to the smaller dataset will be noted. The
sample size for each of the skill groups subsequently becomes 50, 143, 303, 118,
and 21.

For the between-subjects effects, the random subject intercept has a large effect
(F (1, 630) = 1860.76, p < .001, η2

p = .747). The skill_group also has a significant
effect on how players perceive latency (F (4, 630) = 16.38, p < .001, η2

p = .094).
Pairwise comparison using Games–Howell test shows all groups to be significantly
different from one another (p ≤ .049), except the lowest and highest two pairs.

The sphericity assumption was violated by all within-subjects effects. It was corrected
for with the G–G correction.

For the within-subjects effects, added_lat has a statistically significant and strong
effect on the perceived latency (F (4, 2520) = 661.79, p < .001, η2

p = .512). Thus, I
accept hypothesis H2. Players notice when latency is added. Pairwise comparisons
with Bonferroni correction show that all pairs are significantly different from one
another (p ≤ .003).4

The interaction between added_lat and skill_group is significant (F (16, 2520) =
24.77, p < .001, η2

p = .136). Pairwise comparisons with Bonferroni correction show
that while the skill groups do not differ significantly at the baseline latency, once
at least 16.67 ms of additional latency is present the two lowest skill groups give

4In the smaller dataset the 0.00, 8.33, and 16.67 ms conditions are not statistically significantly from
each other. The trend is the same, but the sample size is smaller.

62 Chapter 5 Results

skill_group 0.00 ms 8.33 ms 16.67 ms 33.33 ms 50.00 ms

< 75th 1.027 1.080 1.050 1.517 2.023

75th–93rd 1.097 1.219 1.346 1.802 2.599

93rd–99.5th 1.191 1.263 1.465 2.075 3.154

99.5th–99.99th 1.202 1.331 1.638 2.599 3.956

> 99.99th 1.167 1.524 1.579 2.897 4.206

Total 1.137 1.283 1.416 2.178 3.188

Tab. 5.4.: Average perceived latency answers (scale 0–6) with added latency, split by skill
group.

significantly lower scores compared to the highest two cf. figure 5.9. The middle
group is also different from the lowest group. At 33.33 ms and higher, the separation
is bigger. All comparisons except the two lowest and highest pairs are significant. At
50 ms, the lowest two groups are also separatable. Therefore, I accept hypothesis
H3. Experienced players are able to distinguish added latency better.

−5 0 5 10 15 20 25 30 35 40 45 50 55

1

2

3

4

5

added_lat [ms]

Pe
rc

ei
ve

d
la

te
nc

y
(0

–6
)

skill_group pctl.
< 75
75–93
93–99.5
99.5–99.99
> 99.99

Fig. 5.9.: Average perceived latency increases the most with added latency for highly skilled
players. Error bars denote 95 % confidence interval.

The factor of graphics has a small but statistically significant impact on the per-
ceived latency (F (2, 1260) = 12.74, p < .001, η2

p = .020). Bonferroni corrected
pairwise comparisons show that the graphics settings users usually play with are
significantly lower than both the other options. The difference between minimum
and maximum graphics settings is not significant (p = .058).

The interaction effect graphics*added_lat is not significant (F (8, 5040) = 1.87, p =
.063, η2

p = .003). I reject hypothesis H5 for the perception of latency. There is no

5.3 Effects on perception 63

evidence that players perceive added latency differently at different graphical effect
densities.

All other interaction effects are also not significant (graphics*skill_group ,
graphics*added_lat*skill_group).

5.3.1 Just-noticeable difference

I calculate the JND to allow for comparisons to related works. In order to get the
JND from the collected data on a scale, I compare the choice of the participant at a
specific added latency to their choice at no added latency. If it is higher, the value is
1; if it is lower, the value is 0; if it is the same, the value is 0.5. Since every player
was subjected to every scenario twice, the possible scores are 0.00, 0.25, 0.50, 0.75,
and 1.00.

Since the experiment was only run at specific latency values, the exact 75 % JND
threshold is unknown. I use linear interpolation between the two closest measure-
ments to calculate an estimate. The average JND of the participants is approximately
38 ms.

−5 0 5 10 15 20 25 30 35 40 45 50 55
40 %

50 %

60 %

70 %

80 %

90 %

100 %

JND threshold

added_lat [ms]

C
or

re
ct

Fo
rc

ed
C

om
pa

ri
so

n

skill_group pctl.
< 75th
75th–93rd
93th–99.5th
99.5th–99.99th
> 99.99th

Fig. 5.10.: Comparing the rate of answers that was higher than the answers given at
0 ms. 50 % expected if answers are random. Highly skilled players are able
to recognize added latency much more accurately. Error bars denote 95 %
confidence interval.

64 Chapter 5 Results

Player skill has a significant effect on the perception of latency. I therefore report the
best approximation for each skill group. The lowest skill group of the participants
differentiated 50 ms of additional latency 69 % of the time. As 50 ms is the highest
condition measured, this group has an unknown JND above 50 ms. For the other
groups, the best estimates in order from low to high skill are 46, 40, 28, and 27 ms.
Based on Bonferroni corrected pairwise comparisons at each level of added latency,
the two highest rank groups show no significant difference, while all others do.

5.4 Observational results

Participants were not specifically asked to report on their experience, and since it
was not possible to directly observe them, there was no further feedback from the
majority of participants beyond the experiment data. Regardless, there were some
unprompted responses on social media and email, the main ideas of which are listed
here.

The most common topic was the perception of the latency. Participants said they
were not able to judge it as well as they may have in other situations due to the
constant switching of latency. One participant stated, “I did realize that the amount
of lag from the prior 5 shots had a significant effect on how my brain felt about the
current 5. For example, after 5 shots of very bad lag, the next 5 would seem so much
better that I’d sometimes choose "No Lag", even if I was torn between choosing that
or a "1".” The lack of a constant 0 ms reference to compare to was mentioned. Some
also related that they didn’t rate the latency as high on the scale because they “didn’t
know if it would get any worse.”

There were similar comments about the player performance, e. g., “I could get 5 out
of 5 goals completely in the center with good power with horrible input lag. But
then when I got no lag right after the car would be too fast, and I missed all of the
shots.”

Another factor that players considered a limiting factor to their ability to judge
latency was the tasks chosen. Dribbling the ball was suggested many times as a
better alternative, a task during which the car makes constant contact with the
ball. “Small and constant adjustments give you a good idea of changes in controls
[. . .].”

5.4 Observational results 65

Three people mentioned that their ability to score the five shots of the experiment
drastically improved over the 160 iterations. One suggested at least 100 shots of
warm up.

A few participants reported mild discomfort and frustration from having to play with
the additional latency. One said, “honestly i felt sick after playing with the really
high input lag.”

There was concern about the self-reported hours of play time. Steam shows hours
played for each game, but this includes any time the game is opened in the back-
ground or being used for non-playing purposes. This may vary significantly between
players. In-game statistics for RL matches played do exist, but they do not include
training time which is also experience.

One player with 30 h of experience said the test is too hard for new players. They
said they needed up to 20 tries to make contact with the ball on some shots.

66 Chapter 5 Results

Discussion 6
6.1 Participants

Almost all participants were male and most were young adults. Prior academic
research did not show major differences between genders and age groups. More
research may be needed.

The participants were vastly above average in skill. This has to be kept in mind
when examining the average results of the experiment. They do not represent the
average RL player. The average RL player is represented in the experiment as the
lowest skill grouping, while below average players are not represented at all.

6.2 Player performance

Before discussing the results, there is a most important limitation that has to be
mentioned. The experiment was done on five shots that are supposed to be repre-
sentative of shooting skills on offense. They can never represent a player’s capability
at dribbles, saves, other mechanics, or smart decision-making. Furthermore, it is not
clear how much added latency overestimates the impact of latency in the real world,
where players get used to their latency for very long periods.

The first goal of the experiment was to replicate previous findings showing that
additional latency reduces performance in video games (H1). The results show a
clear drop in player performance at 33.33 and 50.00 ms of added latency. The effect
size is small (cf. table 5.1) compared to Martens et al. [5], however, this may at
least partially be due to the chosen task. The effect size of each of the bordering
skill groups is similar to 50 ms of added latency. Therefore, a player of the middle
skill group with 50 ms added latency gets slightly worse scores on average than
a player of the second-lowest group with no added latency. In the case of the
highest skill group, 33 ms are enough to equalize them with the second-highest
group. Considering the fact that players require about 800 and 2300 h more RL
experience in order to make up for the difference caused by latency, the effect is
anything but negligible. I assume that the small effect size is due to large amount

67

of variance humans show from attempt to attempt (cf. figure 6.1). There is also a
large difference between the five shots that may play a role in this. The effect size
of added_lat on score is d = −.376 on shot 2, but it is d = −.070 on shot 5. The
most obvious difference , is that it is intended as an aerial shot for the higher skilled
players. This means they won’t be dodging, which is a highly timing dependent
mechanic. The experiment does not show a statistically significant degradation of
performance with 8.33 and 16.67 ms for any of the response variables. This may
also be a result of the variance of the task. The alternative hypothesis is based
on reports from section 5.4 (Observational results). The constant switching of
latency may reduce the participants’ performance whenever the latency changes by a
large amount, which would disproportionately reduce the score for the 0 and 50 ms
conditions. As there is no statistically significant difference, this is only a hypothesis
that is covered separately in section 6.4.

0

0.1

0.2

D
en

si
ty

added_lat
0 ms
50 ms

−3 −2 −1 0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

score

D
en

si
ty

skill_group pctl.
93rd–99.5th
99.5th–99.99th

Fig. 6.1.: Density plots of the score of individual shots show that there is large variance.
Neighboring skill groups reveal a similar offset to additional latency of 50 ms.

The next aim of the experiment was to test whether players of higher skill are
more affected by added latency (H4). The results confirm the hypothesis for the
response variable shot_vel . For the highest skill group, 50 ms of added latency
drops the shot velocity by 6.5 %, compared to 2.7 % in the lowest skill group. That,
along with the fact that higher level players are more consistent, means that the
effect size of latency is three times higher. At the highest skill level, 33 ms of added
latency hurt shot velocity by more than 2300 h of practice difference. This is not the
case for the skill group that represents the average RL player. All other response
variables showed no significant interaction between skill_group and added_lat .

68 Chapter 6 Discussion

Although not significant, there is a visible reverse trend on the response variables
goal_scored and ball_misses . This is not necessarily opposed to the hypothesis,
as the same shots will be easier for the highest rank players. On shot 4, they missed
the ball on average .178 times as opposed to the .767 for the lowest skill group.
Even with additional latency, it will still be an easy task for a high ranked player to
not miss the ball, while the lower ranked players struggle and the latency is more
important. I expect that if there was a shot that the best players miss .767 times,
then they would be more affected by latency as such a shot likely requires more
precise timing than the one in the experiment. It is unclear why there is no trend
in the response variable dist_to_goal . Since score is a compound metric, it is
unsurprising that the extra misses, which are weighted heavily, cancel out the extra
shot power. Prior research either found no interaction between latency and player
skill [66, 103], or the reverse [104]. There are multiple possible reasons for this. It
can be due to the same effect that I described regarding misses. If an aim and click
task is so easy that a great player will almost always succeed on first try regardless of
latency, then a worse player’s task completion time will be more affected. It can also
be because most studies use special applications created for the experiment. The
hypothesis that players of higher skill are more affected by latency is based on the
assumption that they are deeply familiar with the environment, which allows them
to do very high precision tasks. That precision necessitates low latency. Any new
game will be unfamiliar and will feel different, especially when done in laboratory
conditions with a different input device than the player usually uses. Therefore, the
players can’t rely on this kind of precision anyway, and just the general ability to
adapt to new games and conditions will give the experienced players the upper hand
with and without added latency. Whenever no interaction was found, it can also be
due to imprecise assessment of skill (usually self-rated), small sample size, and lack
of very high skilled players. My experiment has a significantly larger sample size
than any previous study on the topic, and was able to draw comparisons between
players of the 99.99th percentile and the average player.

The final goal of the performance evaluation was to check for interactions between
graphical effect density/peripheral vision and latency. The main expectation was that
they interact in terms of perception, but this could indirectly affect the performance
response variables. No significant interaction is present in the experiment data.
These points are further elaborated upon in section 6.3.

The baseline system latency caused no statistically significant performance difference.
This is not unexpected though, as the results are already corrected for by player
skill rating. Any player that does worse at the experiment because of their baseline
latency is expected to do worse in the game’s ranked mode, and would on average

6.2 Player performance 69

be sorted into a lower skill group. However, the game revolves around more than
just the shooting in the experiment, and it is therefore not a given that the overall
player skill has to be affected by the same amount. The indifference may also be
in part due to the statistical power, or because with enough practice differences
in baseline latency of about 30 ms (the difference between the highest and lowest
group) are nearly nonexistent. There was no interaction between the baseline and
added latency, which allowed the analysis of the larger dataset.

The independent variable graphics shows that the participants perform worst
at the minimum graphics settings in terms of ball_misses and score , which
is dependent on the misses. This is despite the fact that minimum graphics will
result in the lowest latency. The minimum graphics in Rocket League lack dynamic
shadows, which can help with depth perception, allowing players to more accurately
assess the location of the ball. Furthermore, there is a significant interaction between
graphics and skill_group that showed only lower ranked players are negatively
affected by the minimum graphics settings. This fits with the shadow hypothesis,
as more experienced players can use, for example, the exact size of the ball on
the screen to determine the distance to the ball. A less experienced player may be
required to rely on cues that can carry over from the real world.

The results demonstrate that the type of shot greatly influences how latency as well
as player skill affects the performance. Therefore, I also expect that a different task
within the game that isn’t about shooting may be affected differently. It has to be
noted that the shots that are the most influenced by the player’s skill are not all the
most influenced by added latency. That means it cannot simply be that the response
variables are more sensitive for those shots. The disadvantages of latency that lead
to decreased performance are not the same as being less skilled at the game. These
differences also make it difficult to make an accurate estimation of how the game as
a whole is affected by latency.

Based on the within-subjects contrasts, the linear and quadratic terms of added
latency are significant for all response variables. When using regression to fit a
quadratic mode, the results fit the means for each response variable very well (all
R2

adj > .98). When calculating R2
adj with the individual datapoints, the values are all

< .007 due to the large amount of variance present between trials. The resulting
equation is: y = −2.676× 10−4x2 +3.820× 10−3x+4.037, where x is added latency
and y is the score .

70 Chapter 6 Discussion

6.3 Latency perception

The first in terms of latency perception was also replication (H2). The results show
that even an increase of 8.33 ms can cause a significant increase in perceived latency.
The difference is very small, but in a group of many players, the difference can
become visible. As a game developer, that means that even a small trade-off in
latency has to be well considered, as the game’s community may notice it. Compared
to Martens et al. [5], players notice significantly less latency. Their results stated
that at an additional latency of 97 ms, participants chose a higher score 59 % of the
time. That is the equivalent percentage to my experiment with an additional 20 ms.
Even the skill group that represents the average player reaches that percentage with
33 ms. One of the likely reasons for this difference was already hypothesized by
Ellis et al. [53] to explain significant differences in latency perception. Knowledge
of what latency looks and feels like is very important when trying to identify it.
Most participants of my experiment are expected to have pre-existing knowledge
about latency as explained in section 3.3. Martens et al. [5] also tracked perceived
difficulty of the task, which can serve as a comparison. The perceived difficulty rose
significantly with as little as 28 ms but the effect size is still slightly smaller than the
perceived latency in my experiment.

The second goal of the experiment was to test if higher skill played players are better
at perceiving latency (H3). The data shows a very clear difference between the
average RL player and the 99.99th percentile. The average player was not able to
notice 8 and 17 ms of additional latency at all. At 33 and 50 ms the effect size of
added_lat on the perceived latency is almost 4 times higher for the highest skill
group. The highest skill group rated an additional 50 ms of latency on average 3
points higher than no additional latency, and therefore correctly identified it 94 %
of the time. The relative effect size difference exceeds the relative score difference,
which shows that higher rated players were not just more annoyed1 by the same
amount of latency, but they also gave less random answers. The idea of experience
playing a role in the ability to judge latency is neither novel [53, 55], nor will it be
surprising to most; however, I don’t believe it has been documented to this level of
different groups and sample size. Furthermore, the players of the lowest skill group
had a median RL play time of 600 h. They cannot be classified as beginners at all as
they are average players of the game that are capable of precisely navigating their
car at high speeds. This is quantified by the average players scoring a shot 50 %
of the time, that a new player missed 20 times in a row (reported in section 5.4).

1The questionnaire displayed the annotation “Terrible lag” underneath the highest point options (see
figure 3.1).

6.3 Latency perception 71

When considering that the average participant is likely more informed about latency
than the average gamer, the difference to professional players may be even larger in
practice. Comparing once more to the perceived difficulty of Martens et al. [5], the
effect sizes match with the skill group that makes up the 75th–93rd percentile of
RL players. There is however a big difference. The effect size values of perception
in the RL experiment greatly exceed those of performance by a factor of 2–4, while
Martens et al. found slightly lower effect sizes than the performance. And in my
case, players were able to perceive increased latency even when they performed
(insignificantly) better with it. This shows that the participants do not all just use
the perceived difficulty to differentiate between the scenarios. The two measures
can’t be considered equal.

Skill group
percentile

Cohen’s d vs. 0 ms

8.33 ms 16.67 ms 33.33 ms 50.00 ms

< 75th 0.041 0.017 0.338 0.635

75th–93rd 0.099 0.197 0.527 1.018

93rd–99.5th 0.058 0.213 0.633 1.303

99.5th–99.99th 0.102 0.329 1.007 1.970

> 99.99th 0.273 0.316 1.212 2.281

Total 0.081 0.216 0.663 1.280

Tab. 6.1.: Average perceived latency answers with added latency, split by skill group.

I calculated the JND in order to compare the perception to other related work. Even
though the measurements end at 50 ms, the data shows that for the lowest skill
group the JND approximately matches the 55 ms Deber et al. [44] found for an
indirect dragging task. Rocket League constitutes an indirect second order control
task. In order to confirm that the input type does not change the outcome, a direct
replication of Deber et al.’s experiment with a controller would be needed. The
JND highlights again the huge difference between the skill groups. The best players
are able to notice half the latency of the average player which already has 600 h of
experience. Even the group with a geometric mean experience of 1981 h only has a
JND of 40 ms in the experiment, 12 ms more than the group with barely over 1300 h
more experience. The top 1 % players of RL have a latency JND of 28 ms, which is
substantially lower than any other indirect input task I have found in related work.

These results bring into question any sort of latency perception threshold established
in previous literature. While the results for the average participant in those experi-
ments are valid, imposing a design choice based on a loose threshold may negatively
affect not just gamers but also power users. In this experiment, the player skill is
not perfectly controlled for and causation cannot be asserted. While I do control for

72 Chapter 6 Discussion

baseline latency, graphics settings, and monitor FOV, there may be other factors in
which the groups differ. Age and hours of experience were correlated with the skill
of players. Therefore, I ran extra ANOVAs to see whether the factors interact with
the latency more than skill group does. As this was not part of the planned analysis,
it may be seen as torturing the data, which is why it is not part of the results chapter.
Neither age nor hours showed an interaction with added_lat . However, players
with more hours generally gave higher answers, regardless of the current latency.

One more goal of the experiment was the investigation of the graphical effect density
in combination with latency (H5). The participants do not perceive additional
latency significantly different at different graphics settings. This is the same result
as Mania et al. [49]. However, the graphics settings are not without any effect. They
act like a fixed factor. The difference between minimum and maximum graphics
settings is not statistically significant and is also expected as the higher graphics do
result in a slight increase in latency on average. The difference between the user’s
own graphics settings and the others is most likely due to the user being familiar
with the exact look and latency. The participants rate the perceived latency of their
own settings lower on average, despite the minimum graphics resulting in either the
same or lower latency.

The final aim of the study was to compare the role of peripheral vision in latency
perception (H6). Due to the typical monitor size to distance ratio, the far peripheral
vision was not investigated. This may be relevant for virtual reality. I found no
statistically significant effect of the player FOV on the perception of latency. The
hypothesis may still be true in other games. In Rocket League, the camera is focused
onto the ball. While there is an alternative camera mode, it is the less commonly
used, and the majority of the datapoints will have stayed in the ball focus mode.
When a player starts a turn or stops it, the movement in the player’s peripheral
vision will not drastically change as it would when the camera is directly attached
to the turning. Shooter games, where the player directly controls the camera, will
show more abrupt movement changes in the peripheral vision. Thus, they should be
considered as a test before concluding that the peripheral vision cannot aid in the
detection of latency.

When looking at the within-subjects contrasts, added latency has a significant linear
and quadratic term. Using regression to fit a quadratic equation results in an
R2

adj > .999 for the means, and R2
adj = .200 for the individual datapoints. When

splitting the dataset by skill groups, all of them fit a quadratic equation. The values
are listed in table 6.2. The non-linear response could be related to the fact that
player performance follows the same shape.

6.3 Latency perception 73

skill_group Model

Intercept x x2 R2
adj

< 75th 1.023 -1.036E-03 4.271E-04 .0614

75th–93rd 1.116 5.075E-03 4.881E-04 .1265

93rd–99.5th 1.195 2.785E-03 7.255E-04 .2056

99.5th–99.99th 1.183 1.392E-02 8.347E-04 .3587

> 99.99th 1.175 2.217E-02 7.824E-04 .3875

Tab. 6.2.: Quadratic model factors for perceived latency.

6.4 Observational results

Multiple times players stated that they were not able to judge the latency as well as
they would have been able to if the experiment had a different design. Many past
latency studies with the focus of finding perception thresholds use forced choice
comparison, where the player gets shown in random order the baseline scenario and
the added latency one to compare it to. This direct comparison always allows the
user to have a reference, and they can always choose one clear winner. I do expect
that this will lead to lower JND measured in an experiment, but it’s impossible to
predict how much. One of the primary goals of the experiment was to measure
player performance in a structured, unlikely to be exploited manner. The perception
survey was built afterwards. A similar criticism was uttered about the chosen task.
The shots are the best way for a predictable performance measurement. Dribbling
has a crossover point where a player can become so good at it that they will be able
to keep the ball up for hours. While it would be possible to deduct score for when
the ball isn’t perfectly centered above the car, this sort of task will have nothing in
common with real games of Rocket League. A dribbling task where the player has
to navigate a certain route has the opposite problem. The average player would
not be able to complete it. I was aware of the limitations of the chosen tasks. It is
unknown how different tasks in the same game with unchanging controls may affect
the perception. If the focus was solely on perception of latency, the experiment
would have certainly been better designed another way. Splitting the experiment
into two different parts was not done because this would increase the length of the
experiment and likely decrease participation.

Some participants said their performance was affected by the constant switching
between latencies. Specifically, that going from high to low latency supposedly
made the task a lot more difficult than just staying at the high latency. The data
does show that participants did better with 8.33 ms of added latency on all metrics
but shot_vel . On dist_to_goal and goal_scored , even the 16.67 ms condition

74 Chapter 6 Discussion

had a better outcome than the baseline. However, all of these differences are not
statistically significant when performing Bonferroni corrected pairwise comparisons.
In order to further investigate the claim, I ran a separate analysis in R that wasn’t
possible within the GLM repeated measures doubly multivariate ANOVA. I used a
linear mixed model and added the new factors, scenario_it — denoting which of
the five shots per scenario (set of five shots) the participant got in which order —
and lat_difference — the difference in latency between the current and previous
scenario. When using the full interaction model of the two factors, the ANOVA
determined them not significant. When using only scenario_it , it does reach
significance (p = .017). The result shows that on the first shot of any scenario the
participants perform worse (cf. figure 6.2), which could be due to the change in
latency but also because their flow has been disrupted by the latency perception
dialog window. I removed all the first shots of every scenario and observed no
change at all in the trend of performance with added latency. Even when using only
the last of the five shots of each scenario, the trend stays the same. While this does
not prove that no such adverse effects exist, it means that if they do, five shots are
not enough to adjust to latency.

1 2 3 4 5
3.80

3.85

3.90

3.95

4

scenario_it

sc
or

e

Fig. 6.2.: The first shot in every set of five
shots has lower performance.

Looking at the issue from a theoretical
point of view, I assume for now that
the changing latency does cause a shift
in results. The average added latency
throughout the experiment is 21.67 ms.
If the players adapt their overall play to
that, then any deviation from that figure
will decrease performance. Then I did
regression with the terms added_lat +∣∣∣ added_lat − 21.67

∣∣∣, which gives R2
adj

values almost identical to those with the
polynomial model. With this model, it
is possible to correct the data or sim-
ply ignore the second term and use the
model to predict the assumed true im-
pact of latency. The corrected score is
then highest at the lowest latency condition as one would expect (cf. figure 6.3).
This may be a better assumption of the true impact of additional latency. However,
since the original results at 0.00–16.67 ms did not differ significantly from each
other, there is no scientific reason to use this more complex model over the standard
one. It is built on multiple assumptions. One more issue that the correction does

6.4 Observational results 75

not account for is that the player would also be expected to start out with a strategy
that works at the baseline latency they usually play at, and then over the course of
the experiment adapt until they have an optimal average strategy for the average
latency. The adaptation may not even be completed by the end of the experiment.
It remains a hypothesis for now that might be worth considering in future work.
Experiments don’t usually have the luxury of giving participants a very long time
to adjust to every condition if more than a handful of scenarios are to be tested. A
direct comparison between short and long adjustment times on the same task may
also provide more insights into the relevance of baseline latency. Pavlovych and
Stuerzlinger [62] and Friston et al. [64] had similar trends in their data, while most
other studies found a near linear reduction of performance at these latency levels.
One of Friston et al.’s hypotheses for the trend was that participants are more used
to higher latency than what they had in the baseline laboratory setup. This cannot
be true in my experiment, as the participants were playing on their own setup with
the baseline latency that they are used to.

0 20 40

3.4

3.6

3.8

4

4.2

4.4

sc
or

e

Measured Means
Quadratic Model

0 20 40

added_lat [ms]

Alternative Model

0 20 40

Alt. Model “Corrected”

Fig. 6.3.: The quadratic model fits the data equally well as the one using the distance
from the mean added_lat . The third graph displays what the alternative model
predicts if the participants had ample time to adapt to the latency. Shading
denotes 95 % confidence interval.

6.5 Recommendations

My results show that prescribing a one-size-fits-all latency recommendation may be
harmful. If a developer takes a commonly cited recommendation, such as the 100 ms
figure by Nielsen [41], and concludes that optimization beyond this mark provides

76 Chapter 6 Discussion

no benefit, they end up making multiple fallacies. First, the academic research
as a whole shows that latency affects both the perception and performance very
differently depending on the task and input type (see chapter 2). This thesis shows
that even tasks that seem similar are affected by a significantly different margin.
Furthermore, the experiment reveals that experts of the 99th percentile are vastly
more affected by latency, especially in terms of perception. The average Rocket
League player tolerates more than twice the latency that an expert does. These
groups have a geometric mean lifetime experience of 550 and 3200 h in the game.
While it is unclear whether this difference is as severe for all kinds of tasks, I do not
have any reasons to believe that Rocket League would be entirely different. Thus, if
a developer wants to have a latency target to aim for, I recommend the following
process:

1. Determine the level of user impact in terms of performance (e. g. 5 % accuracy)
and perception (e. g. 50 % detection or 1 extra point on a 5 point scale) that
you deem acceptable.

2a. Find latency research which has tested a task very similar to those the user
needs to perform in the application or game, or

2b. set up a dummy application and run an experiment with the desired tasks.

3. Cut the determined latency time from the previous step in half to account for
expert users that are more attuned to the latency.

4. Subtract at least 6 ms to account for a very fast input device and monitor.2

The developer still needs to take into account factors like the operating system’s
composition manager and VSync to stay within the determined end-to-end latency
target.

For Rocket League players, I provide guidelines of what to keep in mind when
optimizing for latency. While lower latency is better in general, one has to balance
the costs with the benefits. The benefits of small latency improvements on perfor-
mance are minor, even if one assumes the adjusted model (see section 6.4). Having
lower latency is also not equivalent to being a player of higher skill. I do not have
information on how other aspects of the game like dribbling and defending are
affected. These are the costs to keep in mind:

2The more a user cares about latency, the more likely they are to get fast hardware. Therefore, there
is generally no need to hit the latency target for the users with slow hardware. Accounting for
higher latency devices makes sense when the hardware is known, such as the official controller on
a console.

6.5 Recommendations 77

• cost of hardware, such as a more expensive monitor, input device, CPU, and
GPU

– If one is playing for prize money of $10 000, then spending $100 on
hardware has to provide a 1 % increased chance of winning to break
even.

– If the prize money is $1 million, then anything above a 0.01 % chance to
win is worth $100.

• lowering some specific graphics details may reduce player ability to see and
accurately judge situations

– lack of shadows may impair depth perception and causes misjudgments
of the cars’ and ball’s location3

– low resolution may make it difficult to see which direction a car is facing
on the other end of the field

– transparent goalposts make sure that the ball and opponents stay visible
at all times

– the ball trail shows the spin of the ball when the world detail is set to
high

• config options like OneFrameThreadLag=False only provide latency improve-
ments in specific situations and may harm frame rate stability

Some external programs for customizing inputs do add significant latency (Steam
Controller Configuration) while others do not (x360ce, DS4Windows, Durazno).
Users should make informed decisions if this is important to them.

3This is visible in the experiment data.

78 Chapter 6 Discussion

Conclusion and future work 7
The experiment has replicated previous findings that show that the player’s per-
formance is affected negatively by additional latency, and that players are able to
notice when this latency is present. The hypothesis that graphics effects significantly
interact with the effects of latency has yielded no evidence. With the similar idea
tested by Mania et al. [49] also not demonstrating any effects, I don’t predict further
research in this direction will be fruitful. Unlike the graphics condition, there were
limitations of the FOV range present in the experiment. Thus further research on
peripheral vision and latency in the domain of virtual reality may lead to different
results. Due to the virtual camera used in Rocket League, movements at the edge of
the screen are also significantly different from any first-person game. This is another
option to explore.

The most significant finding of the experiment is the impact of player skill on the
effects of latency. In terms of performance, shot velocity, which highly depends
on timing, is more sensitive to latency for highly skilled players (d = −.211 vs.
d = . − 071). The perception of latency is drastically different between players
of different skill levels. Players of the 99th percentile notice 23 ms of latency at
the same rate that the average player notices 50 ms. The groups in between show
that the ability to perceive latency increases with every bit of experience. The fact
that the lowest skill group in the experiment still has 550 h of game experience
demonstrates that this difference is not compared to beginners. The result poses a
lot of potential questions for future research. Are people working 8 hours a day in a
text editor also twice as latency sensitive as those doing it for 1 hour. What are the
limits of latency perception in a task with indirect input? The experiment was not
using a direct comparison between two latency options which likely underestimates
the limit.

The non-linear effects of latency with an apparent floor were surprising to me. Due
to the large sample size, I expected there to be a small but statistically significant
reduction of the performance at 8.33 ms. A future study could investigate the
hypothesis, that frequently changing latency causes these numbers. This can be
tested by giving participants more and less time to adjust to each latency condition.
Alternatively, a study only comparing two latency conditions such as done by Spjut
et al. [66] would not be affected by such a problem. A long-term study in which

79

players have weeks or longer to retrain their muscle-memory would be useful. That
would also make it possible to test the effects of latency on learning and the ability
to get better at games.

One of the results I did not expect was how much of a difference the individual
shots had. Shot number 5 was 3–5 times less affected by latency based on effect size.
The shot was likely done without a dodge by the majority of players. A dodge is a
highly timing dependent mechanic. This is currently the only reason I can see for the
drastic difference. A study that tests this theory by categorizing different mechanics
and analyzing what specifically is affected by latency would be very useful. The tasks
in this experiment were simply designed to cover a number of different scenarios
rather than test specific aspects.

The ability to run the experiment online allowed for a very large sample size and
a large variety of skill. The downside is the lack of a controlled lab environment,
which can also be an upside, as players are taking the experiment in their most
familiar environment. The estimation of latency is difficult to prove accurate. If the
majority of players had their latency measured, then prediction is no longer required.
Very accurate estimation of the PC part of latency is likely possible if the developers
measure it themselves using timers. The identification of monitors and input devices
was over 100 hours of work, and still required more than half of the participants to
be removed from the dataset with estimated latency.

80 Chapter 7 Conclusion and future work

Bibliography

[1] Paul Martin: “The Intellectual Structure of Game Research.” In: Game Studies.
The International Journal of Computer Game Research 18.1 (Apr. 2018). ISSN:
1604-7982. URL: http://gamestudies.org/1801/articles/paul_martin
(visited on July 5, 2021).

[2] Jason G. Reitman, Maria J. Anderson-Coto, Minerva Wu, Je Seok Lee, and
Constance Steinkuehler: “Esports Research: A Literature Review.” In: Games
and Culture 15.1 (Apr. 15, 2019), pp. 32–50. DOI: 10.1177/1555412019840892.

[3] Benjamin Watson, Josef Spjut, Joohwan Kim, et al.: “Esports and High Per-
formance HCI.” In: Extended Abstracts of the 2021 CHI Conference on Human
Factors in Computing Systems. New York, NY, USA: Association for Computing
Machinery, 2021. ISBN: 9781450380959. DOI: 10.1145/3411763.3441313.

[4] Sharon Andrews and Caroline M. Crawford, eds.: International Journal of
eSports Research (IJER) (2021). ISSN: 2691-9273. DOI: 10.4018/IJER.

[5] Judith Martens, Thomas Franke, Nadine Rauh, and Josef F. Krems: “Effects of
low-range latency on performance and perception in a virtual, unstable second-
order control task.” In: Quality and User Experience 3.1 (2018), pp. 1–17. ISSN:
2366-0147. DOI: 10.1007/s41233-018-0023-z.

[6] Mark R. Mine: Characterization of end-to-end delays in head-mounted display
systems. Tech. rep. Chapel Hill, NC, USA: University of North Carolina at Chapel
Hill, 1993. URL: https://www.cs.unc.edu/techreports/93-001.pdf.

[7] Matthew J. P. Regan, Gavin S. P. Miller, Steven M. Rubin, and Chris Kogelnik:
“A real-time low-latency hardware light-field renderer.” In: SIGGRAPH 1999
Conference Proceedings. ACM Press Ser. Boston: Addison Wesley Professional,
1999. ISBN: 0201485605. DOI: 10.1145/311535.311569.

[8] Richard Yao, Tom Heath, Aaron Davies, et al.: Oculus VR Best Practices Guide.
Oculus VR, July 23, 2014. URL: http://energylab.hpa.edu/public/brain/
oculus/oculussdk/doc/oculus_best_practices_guide.pdf (visited on
June 23, 2021).

[9] Epic Games: Unreal Networking Architecture. 2009. URL: https : / / docs .
unrealengine.com/udk/Three/NetworkingOverview.html (visited on July 14,
2021).

[10] Cheryl Savery, Nicholas Graham, Carl Gutwin, and Michelle Brown: “The effects
of consistency maintenance methods on player experience and performance
in networked games.” In: Proceedings of the 17th ACM conference on Computer
supported cooperative work & social computing. ACM, Feb. 2014. DOI: 10.1145/
2531602.2531616.

81

http://gamestudies.org/1801/articles/paul_martin
https://doi.org/10.1177/1555412019840892
https://doi.org/10.1145/3411763.3441313
https://doi.org/10.4018/IJER
https://doi.org/10.1007/s41233-018-0023-z
https://www.cs.unc.edu/techreports/93-001.pdf
https://doi.org/10.1145/311535.311569
http://energylab.hpa.edu/public/brain/oculus/oculussdk/doc/oculus_best_practices_guide.pdf
http://energylab.hpa.edu/public/brain/oculus/oculussdk/doc/oculus_best_practices_guide.pdf
https://docs.unrealengine.com/udk/Three/NetworkingOverview.html
https://docs.unrealengine.com/udk/Three/NetworkingOverview.html
https://doi.org/10.1145/2531602.2531616
https://doi.org/10.1145/2531602.2531616

[11] Yahn W. Bernier (Valve): Latency Compensating Methods in Client/Server In-
game Protocol Design and Optimization. In: Game Developers Conference
(GDC), San Francisco, CA, USA, Mar. 2001. URL: https://web.archive.
org / web / 20041107064247 / https : / / www . gdconf . com / archives / 2001 /
bernier.doc (visited on July 16, 2021). Also available at: https://developer.
valvesoftware . com /wiki / Latency _ Compensating _ Methods _in _ Client /
Server_In-game_Protocol_Design_and_Optimization.

[12] Jared Cone (Psyonix): It IS Rocket Science! The Physics of ‘Rocket League’ Detailed.
In: Game Developers Conference (GDC), San Francisco, CA, USA, Mar. 21, 2018.
URL: https://www.gdcvault.com/play/1024972/It-IS-Rocket-Science-
The.

[13] Alan Traviss Welford: Fundamentals of Skill. London, England: Methuen &
Co, 1968. 428 pp. ISBN: 9780416700206. URL: http://hdl.handle.net/
123456789/13954.

[14] I. Scott MacKenzie: Human-Computer Interaction. An Empirical Research Perspec-
tive. Elsevier Science & Technology, Feb. 21, 2013. 370 pp. ISBN: 9780124058651.

[15] I. Scott MacKenzie and Colin Ware: “Lag as a determinant of human perfor-
mance in interactive systems.” In: Human factors in computing systems. Ed. by
S. Ed Ashlund. CHI ’93. Amsterdam, Netherlands: Association for Computing
Machinery, 1993, pp. 488–493. ISBN: 0897915755. DOI: 10.1145/169059.
169431.

[16] Topi Kaaresoja, Stephen Brewster, and Vuokko Lantz: “Towards the Temporally
Perfect Virtual Button: Touch-Feedback Simultaneity and Perceived Quality
in Mobile Touchscreen Press Interactions.” In: ACM Trans. Appl. Percept. 11.2
(2014). ISSN: 1544-3558. DOI: 10.1145/2611387.

[17] Sophie Jörg, Aline Normoyle, and Alla Safonova: “How responsiveness affects
players’ perception in digital games.” In: Proceedings of the ACM Symposium on
Applied Perception. Ed. by Peter Khooshabeh, Matthias Harders, Rachel McDon-
nell, and Veronica Sundstedt. New York: ACM, 2012. ISBN: 9781450314312.
DOI: 10.1145/2338676.2338683.

[18] Daniel Kahneman: Thinking, fast and slow. New York, NY, USA: Farrar, Straus
and Giroux, 2011. ISBN: 978-0374275631.

[19] Christopher D. Wickens, Justin G. Hollands, Simon Banbury, and Raja Parasura-
man: Engineering psychology and human performance. Fourth edition. London,
England and New York, NY, USA: Routledge, 2016. ISBN: 9781317351320.

[20] Steve T. Bryson and Scott S. Fisher: “Defining, modeling, and measuring system
lag in virtual environments.” In: Stereoscopic Displays and Applications. Ed. by
John O. Merritt and Scott S. Fisher. Santa Clara, CA, USA: SPIE, Sept. 1990.
DOI: 10.1117/12.19894.

82 Bibliography

https://web.archive.org/web/20041107064247/https://www.gdconf.com/archives/2001/bernier.doc
https://web.archive.org/web/20041107064247/https://www.gdconf.com/archives/2001/bernier.doc
https://web.archive.org/web/20041107064247/https://www.gdconf.com/archives/2001/bernier.doc
https://developer.valvesoftware.com/wiki/Latency_Compensating_Methods_in_Client/Server_In-game_Protocol_Design_and_Optimization
https://developer.valvesoftware.com/wiki/Latency_Compensating_Methods_in_Client/Server_In-game_Protocol_Design_and_Optimization
https://developer.valvesoftware.com/wiki/Latency_Compensating_Methods_in_Client/Server_In-game_Protocol_Design_and_Optimization
https://www.gdcvault.com/play/1024972/It-IS-Rocket-Science-The
https://www.gdcvault.com/play/1024972/It-IS-Rocket-Science-The
http://hdl.handle.net/123456789/13954
http://hdl.handle.net/123456789/13954
https://doi.org/10.1145/169059.169431
https://doi.org/10.1145/169059.169431
https://doi.org/10.1145/2611387
https://doi.org/10.1145/2338676.2338683
https://doi.org/10.1117/12.19894

[21] Ding He, Fuhu Liu, Dave Pape, Greg Dawe, and Dan Sandin: “Video-Based
Measurement of System Latency.” In: Fourth International Immersive Projection
Technology Workshop. IPT 2000. Ames, IA, USA: Iowa State University, June
2000. URL: https://www.evl.uic.edu/documents/latency_ipt2000.pdf.

[22] Colin Swindells, John C. Dill, and Kellogg S. Booth: “System lag tests for
augmented and virtual environments.” In: Proceedings of the 13th annual
ACM symposium on User interface software and technology. UIST ’00. New
York, NY, USA: Association for Computing Machiner, 2000, pp. 161–170. DOI:
10.1145/354401.354444.

[23] Dorian Miller and Gary Bishop: “Latency Meter: A device to measure end-to-end
latency of VE systems.” In: Stereoscopic Displays and Virtual Reality Systems
IX. Ed. by Andrew J. Woods, John O. Merritt, Stephen A. Benton, and Mark T.
Bolas. SPIE, May 23, 2002. DOI: 10.1117/12.468062.

[24] Anthony Steed: “A simple method for estimating the latency of interactive,
real-time graphics simulations.” In: Proceedings of the 2008 ACM symposium
on Virtual reality software and technology. VRST ’08. New York, NY, USA:
Association for Computing Machinery, Oct. 27, 2008, pp. 123–129. DOI: 10.
1145/1450579.1450606.

[25] Robert J. Teather, Andriy Pavlovych, Wolfgang Stuerzlinger, and I. Scott MacKen-
zie: “Effects of tracking technology, latency, and spatial jitter on object move-
ment.” In: 2009 IEEE Symposium on 3D User Interfaces. IEEE, 2009. DOI:
10.1109/3dui.2009.4811204.

[26] Massimiliano Di Luca: “New Method to Measure End-to-End Delay of Virtual
Reality.” In: Presence: Teleoperators and Virtual Environments 19.6 (Dec. 1,
2010), pp. 569–584. DOI: 10.1162/pres_a_00023.

[27] Scott J. Horowitz: Measurement and Effects of Transport Delays in a State-of-the-
Art F-16C Flight Simulator. Tech. rep. San Antonio, TX, USA: Air Force Human
Resources Laboratory, Sept. 1, 1987. URL: https://apps.dtic.mil/sti/
citations/ADA187367 (visited on July 22, 2021).

[28] Jiandong Liang, Chris Shaw, and Mark Green: “On temporal-spatial realism
in the virtual reality environment.” In: Proceedings of the 4th annual ACM
symposium on User interface software and technology. UIST ’91. New York, NY,
USA: ACM Press, Nov. 11, 1991. DOI: 10.1145/120782.120784.

[29] Zenja Ivkovic, Ian Stavness, Carl Gutwin, and Steven Sutcliffe: “Quantifying
and Mitigating the Negative Effects of Local Latencies on Aiming in 3D Shooter
Games.” In: CHI 2015. New York, NY, USA: The Association for Computing
Machinery, 2015. ISBN: 9781450331456. DOI: 10.1145/2702123.2702432.

[30] Roger Graves and Ron Bradley: “Millisecond interval timer and auditory reac-
tion time programs for the IBM PC.” In: Behavior Research Methods, Instruments,
& Computers 19.1 (Jan. 1987), pp. 30–35. DOI: 10.3758/bf03207667.

Bibliography 83

https://www.evl.uic.edu/documents/latency_ipt2000.pdf
https://doi.org/10.1145/354401.354444
https://doi.org/10.1117/12.468062
https://doi.org/10.1145/1450579.1450606
https://doi.org/10.1145/1450579.1450606
https://doi.org/10.1109/3dui.2009.4811204
https://doi.org/10.1162/pres_a_00023
https://apps.dtic.mil/sti/citations/ADA187367
https://apps.dtic.mil/sti/citations/ADA187367
https://doi.org/10.1145/120782.120784
https://doi.org/10.1145/2702123.2702432
https://doi.org/10.3758/bf03207667

[31] Géry Casiez, Thomas Pietrzak, Damien Marchal, et al.: “Characterizing Latency
in Touch and Button-Equipped Interactive Systems.” In: Proceedings of the 30th
Annual ACM Symposium on User Interface Software and Technology. ACM, Oct.
2017. DOI: 10.1145/3126594.3126606.

[32] Richard R. Plant, Nick Hammond, and Tom Whitehouse: “Toward an Exper-
imental Timing Standards Lab: benchmarking precision in the real world.”
In: Behavior research methods, instruments, & computers : a journal of the
Psychonomic Society, Inc 34.2 (2002), pp. 218–226. ISSN: 0743-3808. DOI:
10.3758/BF03195446.

[33] Richard R. Plant, Nick Hammond, and Garry Turner: “Self-validating presenta-
tion and response timing in cognitive paradigms: how and why?” In: Behavior
research methods, instruments, & computers : a journal of the Psychonomic Society,
Inc 36.2 (2004), pp. 291–303. ISSN: 0743-3808. DOI: 10.3758/BF03195575.

[34] Florian Bockes, Raphael Wimmer, and Andreas Schmid: “LagBox – Measuring
the Latency of USB-Connected Input Devices.” In: Extended Abstracts of the
2018 CHI Conference on Human Factors in Computing Systems. CHI EA ’18. New
York, NY, USA: Association for Computing Machinery, 2018, pp. 1–6. ISBN:
9781450356213. DOI: 10.1145/3170427.3188632.

[35] Andreas Schmid and Raphael Wimmer: “Yet Another Latency Measuring De-
vice.” In: EHPHCI: Esports and High Performance HCI, Apr. 10, 2021. CHI ’21.
OSF Preprints, Apr. 10, 2021. DOI: 10.31219/osf.io/tkghj.

[36] Mark Claypool, Ragnhild Eg, and Kjetil Raaen: “The Effects of Delay on Game
Actions.” In: Proceedings of the 2016 Annual Symposium on Computer-Human
Interaction in Play Companion Extended Abstracts. CHI PLAY Companion ’16.
New York, NY, USA: Association for Computing Machinery, Oct. 15, 2016,
pp. 117–123. DOI: 10.1145/2968120.2987743.

[37] Mark Claypool: “Game Input with Delay—Moving Target Selection with a
Game Controller Thumbstick.” In: ACM Transactions on Multimedia Computing,
Communications, and Applications 14.3s (Aug. 2018), pp. 1–22. DOI: 10.1145/
3187288.

[38] Mark Claypool, Andy Cockburn, and Carl Gutwin: “Game input with delay:
moving target selection parameters.” In: Proceedings of the 10th ACM Multimedia
Systems Conference. New York, NY, USA: Association for Computing Machinery,
June 18, 2019. ISBN: 9781450362979. DOI: 10.1145/3304109.3306232.

[39] Mark Claypool, Andy Cockburn, and Carl Gutwin: “The Impact of Motion and
Delay on Selecting Game Targets with a Mouse.” In: ACM Transactions on
Multimedia Computing, Communications, and Applications 16.2s (July 2020),
pp. 1–24. DOI: 10.1145/3390464.

[40] Robert B. Miller: “Response time in man-computer conversational transactions.”
In: Proceedings of the December 9-11, 1968, fall joint computer conference, part
I on - AFIPS ’68 (Fall, part I). New York, NY, USA: ACM Press, 1968. DOI:
10.1145/1476589.1476628.

84 Bibliography

https://doi.org/10.1145/3126594.3126606
https://doi.org/10.3758/BF03195446
https://doi.org/10.3758/BF03195575
https://doi.org/10.1145/3170427.3188632
https://doi.org/10.31219/osf.io/tkghj
https://doi.org/10.1145/2968120.2987743
https://doi.org/10.1145/3187288
https://doi.org/10.1145/3187288
https://doi.org/10.1145/3304109.3306232
https://doi.org/10.1145/3390464
https://doi.org/10.1145/1476589.1476628

[41] Jakob Nielsen: “Chapter 5 - Usability Heuristics.” In: Usability Engineering. San
Francisco, CA, USA: Morgan Kaufmann, 1993, pp. 115–163. ISBN: 9780125184069.
DOI: 10.1016/B978-0-08-052029-2.50008-5.

[42] Stuart K. Card, George G. Robertson, and Jock D. Mackinlay: “The information
visualizer, an information workspace.” In: Proceedings of the SIGCHI conference
on Human factors in computing systems Reaching through technology - CHI ’91.
ACM Press, 1991. DOI: 10.1145/108844.108874.

[43] Stuart K. Card, Thomas P. Moran, and Allen Newell: The Psychology of Human-
Computer Interaction. Hillsdale, NJ, USA: Lawrence Erlbaum Associates, 1983.
488 pp. ISBN: 9780898592436. DOI: 10.1201/9780203736166.

[44] Jonathan Deber, Ricardo Jota, Clifton Forlines, and Daniel Wigdor: “How
Much Faster is Fast Enough? User perception of Latency & Latency Improve-
ments in Direct and Indirect Touch.” In: Proceedings of the 33rd annual acm
conference on human factors in computing systems. CHI ’15. Association for
Computing Machinery, 2015, pp. 1827–1836. ISBN: 9781450331456. DOI:
10.1145/2702123.2702300.

[45] Michelle Annett, Albert Ng, Paul Dietz, Walter F. Bischof, and Anoop Gupta:
“How Low Should We Go? Understanding the Perception of Latency While
Inking.” In: Proceedings of Graphics Interface 2014. GI ’14. Montreal, Quebec,
Canada: Canadian Information Processing Society, 2014, pp. 167–174. ISBN:
9781482260038. URL: https://dl.acm.org/doi/10.5555/2619648.2619677.

[46] Albert Ng, Michelle Annett, Paul Dietz, Anoop Gupta, and Walter F. Bischof: “In
the blink of an eye.” In: Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems. ACM, Apr. 2014. DOI: 10.1145/2556288.2557037.

[47] Albert Ng, Julian Lepinski, Daniel Wigdor, Steven Sanders, and Paul Dietz:
“Designing for low-latency direct-touch input.” In: Proceedings of the 25th annual
ACM symposium on User interface software and technology. Ed. by Rob Miller.
ACM Digital Library. New York, NY, USA: ACM, 2012. ISBN: 9781450315807.
DOI: 10.1145/2380116.2380174.

[48] Ricardo Jota, Albert Ng, Paul Dietz, and Daniel Wigdor: “How fast is fast
enough?” In: Proceedings of the SIGCHI Conference on Human Factors in Com-
puting Systems. ACM, Apr. 2013. DOI: 10.1145/2470654.2481317.

[49] Katerina Mania, Bernard D. Adelstein, Stephen R. Ellis, and Michael I. Hill:
“Perceptual sensitivity to head tracking latency in virtual environments with
varying degrees of scene complexity.” In: Proceedings of the 1st Symposium on
Applied perception in graphics and visualization - APGV ’04. ACM Press, 2004.
DOI: 10.1145/1012551.1012559.

[50] Jason J. Jerald: “Scene-motion- and latency-perception thresholds for head-
mounted displays.” PhD thesis. Chapel Hill, NC, USA: University of North
Carolina at Chapel Hill, 2009. DOI: 10.17615/CD1T-9Y62.

Bibliography 85

https://doi.org/10.1016/B978-0-08-052029-2.50008-5
https://doi.org/10.1145/108844.108874
https://doi.org/10.1201/9780203736166
https://doi.org/10.1145/2702123.2702300
https://dl.acm.org/doi/10.5555/2619648.2619677
https://doi.org/10.1145/2556288.2557037
https://doi.org/10.1145/2380116.2380174
https://doi.org/10.1145/2470654.2481317
https://doi.org/10.1145/1012551.1012559
https://doi.org/10.17615/CD1T-9Y62

[51] Stephen R. Ellis, Mark J. Young, Bernard D. Adelstein, and Sheryl M. Ehrlich:
“Discrimination of Changes in Latency during Head Movement.” In: Proceed-
ings of the HCI International ’99 (the 8th International Conference on Human-
Computer Interaction) on Human-Computer Interaction: Communication, Co-
operation, and Application Design – Volume 2. Hillsdale, NJ, USA: L. Erlbaum
Associates Inc., Aug. 1999, pp. 1129–1133. ISBN: 9780805833928. URL: https:
//humansystems.arc.nasa.gov/publications/Ellis_1999_Head_Movement_
Latency.pdf.

[52] Bernard D. Adelstein, Thomas G. Lee, and Stephen R. Ellis: “Head Tracking
Latency in Virtual Environments: Psychophysics and a Model.” In: Proceedings
of the Human Factors and Ergonomics Society Annual Meeting 47.20 (Oct. 2003),
pp. 2083–2087. DOI: 10.1177/154193120304702001.

[53] Stephen R. Ellis, Katerina Mania, Bernard D. Adelstein, and Michael I. Hill:
“Generalizeability of Latency Detection in a Variety of Virtual Environments.”
In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting
48.23 (Sept. 2004), pp. 2632–2636. DOI: 10.1177/154193120404802306.

[54] Teemu Mäki-Patola and Perttu Hämäläinen: “Latency Tolerance for Gesture
Controlled Continuous Sound Instrument Without Tactile Feedback.” English.
In: Proceedings of ICMC 2004, the 30th Annual International Computer Music
Conference. Miami, FL, USA, Nov. 2004, pp. 409–416. ISBN: 9780971319226.
URL: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.135.
8653&rep=rep1&type=pdf.

[55] Eryk Banatt, Stefan Uddenberg, and Brian Scholl: “Input Latency Detection
in Expert-Level Gamers. An experiment in visuomotor perception.” Apr. 21,
2017. URL: https : / / cogsci . yale . edu / sites / default / files / files /
Thesis2017Banatt.pdf (visited on July 7, 2021). Draft.

[56] T. Kaaresoja, E. Anttila, and E. Hoggan: “The effect of tactile feedback latency
in touchscreen interaction.” In: 2011 IEEE World Haptics Conference. Institute
of Electrical and Electronics Engineers (IEEE), June 2011. DOI: 10.1109/whc.
2011.5945463.

[57] Jack E. Conklin: “Effect of control lag on performance in a tracking task.” In:
Journal of Experimental Psychology 53.4 (1957), pp. 261–268. DOI: 10.1037/
h0040728.

[58] E. C. Poulton: Tracking Skill and Manual Control. New York, NY, USA: Academic
Press, 1974. ISBN: 9780125635509.

[59] M. J. Warrick: Effect of transmission-type control lags on tracking accuracy. Tech.
rep. 5916. Dayton, OH, USA: USAF Air Materiel Command, 1949.

[60] Paul M. Fitts: “The information capacity of the human motor system in control-
ling the amplitude of movement.” In: Journal of Experimental Psychology 47.6
(1954), pp. 381–391. DOI: 10.1037/h0055392.

86 Bibliography

https://humansystems.arc.nasa.gov/publications/Ellis_1999_Head_Movement_Latency.pdf
https://humansystems.arc.nasa.gov/publications/Ellis_1999_Head_Movement_Latency.pdf
https://humansystems.arc.nasa.gov/publications/Ellis_1999_Head_Movement_Latency.pdf
https://doi.org/10.1177/154193120304702001
https://doi.org/10.1177/154193120404802306
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.135.8653&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.135.8653&rep=rep1&type=pdf
https://cogsci.yale.edu/sites/default/files/files/Thesis2017Banatt.pdf
https://cogsci.yale.edu/sites/default/files/files/Thesis2017Banatt.pdf
https://doi.org/10.1109/whc.2011.5945463
https://doi.org/10.1109/whc.2011.5945463
https://doi.org/10.1037/h0040728
https://doi.org/10.1037/h0040728
https://doi.org/10.1037/h0055392

[61] Andriy Pavlovych and Wolfgang Stuerzlinger: “The tradeoff between spatial
jitter and latency in pointing tasks.” In: Proceedings of the 1st ACM SIGCHI
symposium on Engineering interactive computing systems. EICS ’09. New York,
NY, USA: Association for Computing Machinery, July 15, 2009, pp. 187–196.
DOI: 10.1145/1570433.1570469.

[62] Andriy Pavlovych and Wolfgang Stuerzlinger: “Target Following Performance in
the Presence of Latency, Jitter, and Signal Dropouts.” In: Proceedings of Graphics
Interface 2011. GI ’11. St. John’s, Newfoundland, Canada: Canadian Human-
Computer Communications Society, 2011, pp. 33–40. ISBN: 9781450306935.
URL: https://dl.acm.org/doi/10.5555/1992917.1992924.

[63] Andriy Pavlovych and Carl Gutwin: “Assessing Target Acquisition and Tracking
Performance for Complex Moving Targets in the Presence of Latency and
Jitter.” In: Proceedings of Graphics Interface 2012. GI ’12. Toronto, Ontario,
Canada: Canadian Information Processing Society, 2012, pp. 109–116. ISBN:
9781450314206. URL: https://dl.acm.org/doi/10.5555/2305276.2305295.

[64] Sebastian Friston, Per Karlström, and Anthony Steed: “The Effects of Low
Latency on Pointing and Steering Tasks.” In: IEEE Transactions on Visualization
and Computer Graphics 22.5 (2016), pp. 1605–1615. ISSN: 1941-0506. DOI:
10.1109/TVCG.2015.2446467.

[65] Josef Spjut, Ben Boudaoud, Kamran Binaee, et al.: “Latency of 30 ms Bene-
fits First Person Targeting Tasks More Than Refresh Rate Above 60 Hz.” In:
SIGGRAPH Asia 2019 Technical Briefs. ACM Digital Library. New York, NY,
USA: Association for Computing Machinery, 2019. ISBN: 9781450369459. DOI:
10.1145/3355088.3365170.

[66] Josef Spjut, Ben Boudaoud, and Joohwan Kim: “A Case Study of First Person
Aiming at Low Latency for Esports.” In: EHPHCI: Esports and High Performance
HCI, Apr. 15, 2021. CHI ’21. OSF Preprints, Apr. 15, 2021. DOI: 10.31219/osf.
io/nu9p3.

[67] Shengmei Liu, Mark Claypool, Atsuo Kuwahara, Jamie Sherman, and James
J. Scovell: “Lower is Better? The Effects of Local Latencies on Competitive
First-Person Shooter Game Players.” In: Proceedings of the 2021 CHI Conference
on Human Factors in Computing Systems. New York, NY, USA: Association
for Computing Machinery, May 2021. ISBN: 9781450380966. DOI: 10.1145/
3411764.3445245.

[68] Jiawei Sun and Mark Claypool: “Evaluating Streaming and Latency Com-
pensation in a Cloud-based Game.” In: Proceedings of the 4th IARIA Interna-
tional Conference on Advances in Computation, Communications and Services.
ACCSE 2019. Nice, France, Aug. 2, 2019. ISBN: 9781510894204. URL: https:
//web.cs.wpi.edu/~claypool/papers/drizzle/paper.pdf.

[69] Ben Boudaoud, Pyarelal Knowles, Joohwan Kim, and Josef Spjut: “Gaming at
Warp Speed: Improving Aiming with Late Warp.” In: ACM, Aug. 2021. DOI:
10.1145/3450550.3465347.

Bibliography 87

https://doi.org/10.1145/1570433.1570469
https://dl.acm.org/doi/10.5555/1992917.1992924
https://dl.acm.org/doi/10.5555/2305276.2305295
https://doi.org/10.1109/TVCG.2015.2446467
https://doi.org/10.1145/3355088.3365170
https://doi.org/10.31219/osf.io/nu9p3
https://doi.org/10.31219/osf.io/nu9p3
https://doi.org/10.1145/3411764.3445245
https://doi.org/10.1145/3411764.3445245
https://web.cs.wpi.edu/~claypool/papers/drizzle/paper.pdf
https://web.cs.wpi.edu/~claypool/papers/drizzle/paper.pdf
https://doi.org/10.1145/3450550.3465347

[70] Joohwan Kim, Pyarelal Knowles, Josef Spjut, Ben Boudaoud, and Morgan
Mcguire: “Post-Render Warp with Late Input Sampling Improves Aiming Under
High Latency Conditions.” In: 3.2 (Aug. 2020), pp. 1–18. DOI: 10 . 1145 /
3406187.

[71] Niels Henze, Markus Funk, and Alireza Sahami Shirazi: “Software-reduced
touchscreen latency.” In: Proceedings of the 18th International Conference on
Human-Computer Interaction with Mobile Devices and Services. MobileHCI ’16.
New York, NY, USA: Association for Computing Machinery, Sept. 2016, pp. 434–
441. DOI: 10.1145/2935334.2935381.

[72] Rosane Ushirobira, Denis Efimov, Gery Casiez, Nicolas Roussel, and Wilfrid
Perruquetti: “A forecasting algorithm for latency compensation in indirect
human-computer interactions.” In: 2016 European Control Conference (ECC).
IEEE, June 2016. DOI: 10.1109/ecc.2016.7810433.

[73] Axel Antoine, Sylvain Malacria, and Géry Casiez: “Using High Frequency Ac-
celerometer and Mouse to Compensate for End-to-end Latency in Indirect
Interaction.” In: Proceedings of the 2018 CHI Conference on Human Factors in
Computing Systems. CHI’ 18. New York, NY, USA: Association for Computing
Machinery, Apr. 2018. DOI: 10.1145/3173574.3174183.

[74] Reiza Rayman, Serguei Primak, Rajni Patel, et al.: “Effects of Latency on
Telesurgery: An Experimental Study.” In: Medical Image Computing and Computer-
Assisted Intervention – MICCAI 2005. Ed. by James Duncan and Guido. Gerig.
Image Processing, Computer Vision, Pattern Recognition, and Graphics. Berlin,
Heidelberg: Springer Berlin Heidelberg and Imprint: Springer, 2005, pp. 57–64.
ISBN: 978-3-540-32095-1. DOI: 10.1007/11566489_8.

[75] Jon S. Kennedy, Marc J. Buehner, and Simon K. Rushton: “Adaptation to
Sensory-Motor Temporal Misalignment: Instrumental or Perceptual Learning?”
In: Quarterly Journal of Experimental Psychology 62.3 (Mar. 1, 2009), pp. 453–
469. DOI: 10.1080/17470210801985235.

[76] Mircea Lupu, Mingui Sun, David Askey, Ruiping Xia, and Zhi-Hong Mao: “Hu-
man strategies in balancing an inverted pendulum with time delay.” In: 2010
Annual International Conference of the IEEE Engineering in Medicine and Biol-
ogy. Buenos Aires, Argentina: Institute of Electrical and Electronics Engineers
(IEEE), Aug. 2010. ISBN: 9781424441235. DOI: 10.1109/iembs.2010.5626298.

[77] Mark Claypool: “On Models for Game Input with Delay — Moving Target
Selection with a Mouse.” In: 2016 IEEE International Symposium on Multimedia
(ISM). IEEE, Dec. 2016. DOI: 10.1109/ism.2016.0125.

[78] Lothar Pantel and Lars C. Wolf: “On the impact of delay on real-time multiplayer
games.” In: Proceedings of the 12th international workshop on Network and
operating systems support for digital audio and video. NOSSDAV ’02. ACM Press,
2002. DOI: 10.1145/507670.507674.

88 Bibliography

https://doi.org/10.1145/3406187
https://doi.org/10.1145/3406187
https://doi.org/10.1145/2935334.2935381
https://doi.org/10.1109/ecc.2016.7810433
https://doi.org/10.1145/3173574.3174183
https://doi.org/10.1007/11566489_8
https://doi.org/10.1080/17470210801985235
https://doi.org/10.1109/iembs.2010.5626298
https://doi.org/10.1109/ism.2016.0125
https://doi.org/10.1145/507670.507674

[79] Sunjun Kim, Byungjoo Lee, and Antti Oulasvirta: “Impact Activation Improves
Rapid Button Pressing.” In: Proceedings of the 2018 CHI Conference on Hu-
man Factors in Computing Systems. ACM, Apr. 2018. DOI: 10.1145/3173574.
3174145.

[80] Burke Davison: Techniques for Robust Touch Sensing Design. Microchip Technol-
ogy Inc., 2013. URL: https://ww1.microchip.com/downloads/en/DeviceDoc/
00001334B.pdf (visited on Nov. 1, 2021).

[81] Jack Ganssle: A Guide to Debouncing. Baltimore, MD, USA: The Ganssle Group,
Apr. 2007. URL: http://www.ganssle.com/debouncing.htm (visited on Nov. 1,
2021).

[82] Julie A. Jacko, ed.: The Human–Computer Interaction Handbook. Third Edition.
CRC Press, May 4, 2012. ISBN: 9781439829431. DOI: 10.1201/b11963.

[83] Microchip Technology: AVR® ADC Noise Reduction Mode. 2021. URL: https:
//microchipdeveloper.com/8avr:adcnoisereduce (visited on Sept. 5, 2021).

[84] USB Implementers Forum, Inc.: Device Class Definition for Human Interface
Devices (HID): Universal Serial Bus (USB). Version 1.11. USB Implementers
Forum, Inc., May 27, 2001. URL: https://www.usb.org/sites/default/
files/hid1_11.pdf (visited on June 8, 2021).

[85] Raphael Wimmer, Andreas Schmid, and Florian Bockes: “On the Latency of
USB-Connected Input Devices.” In: Proceedings of the 2019 CHI Conference on
Human Factors in Computing Systems. CHI ’19. New York, NY, USA: Association
for Computing Machinery, 2019, pp. 1–12. ISBN: 9781450359702. DOI: 10.
1145/3290605.3300650.

[86] Gerhard Gassler: “Cathode Ray Tubes (CRTs).” In: Handbook of Visual Dis-
play Technology. Ed. by Janglin Chen, Wayne Cranton, and Mark Fihn. Cham,
Switzerland: Springer International Publishing, 2016, pp. 1595–1607. ISBN:
978-3-319-14346-0. DOI: 10.1007/978-3-319-14346-0_70.

[87] Karlheinz Blankenbach: “Panel Interfaces: Fundamentals.” In: Handbook of
Visual Display Technology. Ed. by Janglin Chen, Wayne Cranton, and Mark Fihn.
Cham, Switzerland: Springer International Publishing, 2016, pp. 675–684.
ISBN: 978-3-319-14346-0. DOI: 10.1007/978-3-319-14346-0_35.

[88] Steven LaValle: Virtual reality. 2020. URL: http://lavalle.pl/vr/ (visited on
June 23, 2021).

[89] Jason Gregory: Game Engine Architecture. Third Edition. Boca Raton, FL, USA:
CRC Press, May 29, 2018. ISBN: 9781138035454.

[90] Statista: Display Technology. Dossier. June 2020. URL: https://www.statista.
com/study/35591/display- technology- statista- dossier/ (visited on
Nov. 1, 2021).

Bibliography 89

https://doi.org/10.1145/3173574.3174145
https://doi.org/10.1145/3173574.3174145
https://ww1.microchip.com/downloads/en/DeviceDoc/00001334B.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/00001334B.pdf
http://www.ganssle.com/debouncing.htm
https://doi.org/10.1201/b11963
https://microchipdeveloper.com/8avr:adcnoisereduce
https://microchipdeveloper.com/8avr:adcnoisereduce
https://www.usb.org/sites/default/files/hid1_11.pdf
https://www.usb.org/sites/default/files/hid1_11.pdf
https://doi.org/10.1145/3290605.3300650
https://doi.org/10.1145/3290605.3300650
https://doi.org/10.1007/978-3-319-14346-0_70
https://doi.org/10.1007/978-3-319-14346-0_35
http://lavalle.pl/vr/
https://www.statista.com/study/35591/display-technology-statista-dossier/
https://www.statista.com/study/35591/display-technology-statista-dossier/

[91] Karlheinz Blankenbach, Andreas Hudak, and Michael Jentsch: “Direct Drive,
Multiplex, and Passive Matrix.” In: Handbook of Visual Display Technology. Ed.
by Janglin Chen, Wayne Cranton, and Mark Fihn. Cham: Springer International
Publishing, 2016, pp. 621–644. ISBN: 978-3-319-14346-0. DOI: 10.1007/978-
3-319-14346-0_33.

[92] H. Kawamoto: “The history of liquid-crystal displays.” In: Proceedings of the
IEEE 90.4 (2002), pp. 460–500. ISSN: 0018-9219. DOI: 10.1109/jproc.2002.
1002521.

[93] Karlheinz Blankenbach: “Temporal Effects.” In: Handbook of Visual Display Tech-
nology. Ed. by Janglin Chen, Wayne Cranton, and Mark Fihn. Cham: Springer
International Publishing, 2016, pp. 3153–3176. ISBN: 978-3-319-14346-0. DOI:
10.1007/978-3-319-14346-0_146.

[94] David L. Woods, John M. Wyma, E. William Yund, Timothy J. Herron, and
Bruce Reed: “Factors influencing the latency of simple reaction time.” In:
Frontiers in Human Neuroscience 9 (2015), p. 131. ISSN: 1662-5161. DOI:
10.3389/fnhum.2015.00131.

[95] Richard R. Plant, Nick Hammond, and Tom Whitehouse: “How choice of mouse
may affect response timing in psychological studies.” In: Behavior research
methods, instruments, & computers : a journal of the Psychonomic Society, Inc
35.2 (2003), pp. 276–284. ISSN: 0743-3808. DOI: 10.3758/BF03202553.

[96] Akimitsu Hogge (Activision): Controller to Display Latency in ‘Call of Duty’. In:
Game Developers Conference (GDC), San Francisco, CA, USA, Mar. 2016. URL:
https://www.gdcvault.com/play/1026327/GDC (visited on Sept. 5, 2021).

[97] Mark Mine and Gary Bishop: Just-in-time pixels. Tech. rep. Chapel Hill, NC,
USA: University of North Carolina at Chapel Hill, 1995. URL: https://www.cs.
unc.edu/techreports/93-005.pdf.

[98] Mark Segal and Kurt Akeley: OpenGL 4.6 (Core Profile). Ed. by Chris Frazier,
Jon Leech, and Pat Brown. The Khronos Group, Oct. 22, 2019. URL: https:
/ / www . khronos . org / registry / OpenGL / specs / gl / glspec46 . core . pdf
(visited on Nov. 1, 2021).

[99] Alexander O. Goushcha and Bernd Tabbert: “On response time of semiconductor
photodiodes.” In: Optical Engineering 56.09 (Sept. 2017), p. 1. DOI: 10.1117/1.
oe.56.9.097101.

[100] Microsoft: hidsdi.h header. May 9, 2018. URL: https://docs.microsoft.com/
en-us/windows-hardware/drivers/ddi/hidsdi/ (visited on Sept. 26, 2021).

[101] Microsoft: WMI Core Provider. May 31, 2018. URL: https://docs.microsoft.
com/en-us/windows/win32/wmicoreprov/wmi-core-provider- (visited on
Sept. 27, 2021).

[102] J. P. Verma: Repeated Measures Design for Empirical Researchers. Hoboken, NJ,
USA: John Wiley & Sons, Aug. 21, 2015. ISBN: 9781119052692.

90 Bibliography

https://doi.org/10.1007/978-3-319-14346-0_33
https://doi.org/10.1007/978-3-319-14346-0_33
https://doi.org/10.1109/jproc.2002.1002521
https://doi.org/10.1109/jproc.2002.1002521
https://doi.org/10.1007/978-3-319-14346-0_146
https://doi.org/10.3389/fnhum.2015.00131
https://doi.org/10.3758/BF03202553
https://www.gdcvault.com/play/1026327/GDC
https://www.cs.unc.edu/techreports/93-005.pdf
https://www.cs.unc.edu/techreports/93-005.pdf
https://www.khronos.org/registry/OpenGL/specs/gl/glspec46.core.pdf
https://www.khronos.org/registry/OpenGL/specs/gl/glspec46.core.pdf
https://doi.org/10.1117/1.oe.56.9.097101
https://doi.org/10.1117/1.oe.56.9.097101
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/hidsdi/
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/hidsdi/
https://docs.microsoft.com/en-us/windows/win32/wmicoreprov/wmi-core-provider-
https://docs.microsoft.com/en-us/windows/win32/wmicoreprov/wmi-core-provider-

[103] Ragnhild Eg, Kjetil Raaen, and Mark Claypool: “Playing with Delay: With Poor
Timing Comes Poor Performance, and Experience Follows Suit.” In: IEEE, May
2018. DOI: 10.1109/qomex.2018.8463382.

[104] Shengmei Liu and Mark Claypool: “Game Input with Delay – A Model of the
Time Distribution for Selecting a Moving Target with a Mouse.” In: MultiMedia
Modeling. Cham, Switzerland: Springer International Publishing, 2021, pp. 506–
518. DOI: 10.1007/978-3-030-67832-6_41.

Web pages

[WWW1] Jurre Pannekeet (Newzoo): Newzoo’s Esports Consumer Predictions for 2021:
A Quarter of the World’s Population Will Be Aware of Esports. (Aug. 7, 2018).
URL: https://newzoo.com/insights/articles/newzoos-esports-consumer-
predictions-for-2021-a-quarter-of-the-worlds-population-will-be-
aware-of-esports/ (visited on July 3, 2021).

[WWW2] TwitchTracker: Rocket League - Statistics. (June 11, 2021). URL: https://
twitchtracker.com/rocketleague/statistics (visited on June 11, 2021).

[WWW3] Ian Nowakowski and Murty Shah (Psyonix): Announcing RLCS X. (July 1,
2020). URL: https://esports.rocketleague.com/news/announcing-rlcs-x/
(visited on June 11, 2021).

[WWW4] Ian Nowakowski (Psyonix): Season 8 World Championship Regional Preview.
(Dec. 11, 2019). URL: https://esports.rocketleague.com/news/season-8-
world-championship-regional-preview/ (visited on June 12, 2021).

[WWW5] Ian Nowakowski (Psyonix): Introducing the RLCS X Championships. (Apr. 15,
2021). URL: https://esports.rocketleague.com/news/introducing-the-
rlcs-x-championships/ (visited on June 12, 2021).

[WWW6] Ian Nowakowski (Psyonix): Introducing the 2021 CRL Spring Season. (Feb. 25,
2021). URL: https://esports.rocketleague.com/news/introducing-the-
2021-crl-spring-spring-season/ (visited on June 13, 2021).

[WWW7] Level Next – The College Esports League: Announcing the Level Next Rocket
League Spring Showcase. (May 3, 2021). URL: https://levelnextesports.
com/news/2021/5/3/announcing-the-level-next-rocket-league-spring-
showcase (visited on June 13, 2021).

[WWW8] Tobias Seck (The Esports Observer): Q1 2021’s Most Impactful PC Games: LOL,
CS:GO, and Fortnite Stay on Top While COVID-19 Policies Continue to Upset
the Ranking. (Apr. 28, 2021). URL: https://esportsobserver.com/q1-2021-
impact-index/ (visited on June 12, 2021).

Web pages 91

https://doi.org/10.1109/qomex.2018.8463382
https://doi.org/10.1007/978-3-030-67832-6_41
https://newzoo.com/insights/articles/newzoos-esports-consumer-predictions-for-2021-a-quarter-of-the-worlds-population-will-be-aware-of-esports/
https://newzoo.com/insights/articles/newzoos-esports-consumer-predictions-for-2021-a-quarter-of-the-worlds-population-will-be-aware-of-esports/
https://newzoo.com/insights/articles/newzoos-esports-consumer-predictions-for-2021-a-quarter-of-the-worlds-population-will-be-aware-of-esports/
https://twitchtracker.com/rocketleague/statistics
https://twitchtracker.com/rocketleague/statistics
https://esports.rocketleague.com/news/announcing-rlcs-x/
https://esports.rocketleague.com/news/season-8-world-championship-regional-preview/
https://esports.rocketleague.com/news/season-8-world-championship-regional-preview/
https://esports.rocketleague.com/news/introducing-the-rlcs-x-championships/
https://esports.rocketleague.com/news/introducing-the-rlcs-x-championships/
https://esports.rocketleague.com/news/introducing-the-2021-crl-spring-spring-season/
https://esports.rocketleague.com/news/introducing-the-2021-crl-spring-spring-season/
https://levelnextesports.com/news/2021/5/3/announcing-the-level-next-rocket-league-spring-showcase
https://levelnextesports.com/news/2021/5/3/announcing-the-level-next-rocket-league-spring-showcase
https://levelnextesports.com/news/2021/5/3/announcing-the-level-next-rocket-league-spring-showcase
https://esportsobserver.com/q1-2021-impact-index/
https://esportsobserver.com/q1-2021-impact-index/

[WWW9] Joab Gilroy (IGN): Why Rocket League Might Be the Perfect Mainstream Esport:
It’s simple to follow, easy to learn and difficult to master. (Aug. 29, 2017). URL:
https://www.ign.com/articles/2017/08/23/why-rocket-league-might-
be-the-perfect-mainstream-esport (visited on June 12, 2021).

[WWW10] Max Thielmeyer (Forbes): ’Rocket League’ Is Poised To Become The Next Major
Esport. Here’s Why: (Jan. 19, 2019). URL: https://www.forbes.com/sites/
maxthielmeyer/2019/01/19/rocket-league-is-poised-to-become-the-
next-major-esport-heres-why/ (visited on June 12, 2021).

[WWW11] Trent Murray (The Esports Observer): Opinion: Rocket League Will Never Be a
Tier One Esport, but it Can Dominate High School. (Apr. 5, 2021). URL: https:
//esportsobserver.com/rocket-league-scholastic-esports/ (visited on
June 12, 2021).

[WWW12] Battle(non)sense: Netcode & Input Lag Analyses. (2021). URL: https://www.
youtube.com/playlist?list=PLfOoCUS0PSkXVGjhB63KMDTOT5sJ0vWy8 (vis-
ited on July 13, 2021).

[WWW13] Rocket Science: (DS4 PC) Lower input lag for free! - Rocket Science. (Jan. 28,
2020). URL: https://youtu.be/x0wcJM4FtXQ (visited on July 30, 2021).

[WWW14] Mark Rejhon (Blur Busters): Preview of NVIDIA G-SYNC, Part #2 (Input Lag).
(Jan. 13, 2014). URL: https://blurbusters.com/gsync/preview2/ (visited
on July 30, 2021).

[WWW15] Loïc Petit: Controller Lag. Methodology. (Sept. 7, 2019). URL: https://inputlag.
science/controller/methodology (visited on July 31, 2021).

[WWW16] Seth Schneider (NVIDIA): NVIDIA Reviewer Toolkit for Graphics Performance.
(Sept. 4, 2020). URL: https://www.nvidia.com/en-us/geforce/news/nvidia-
reviewer-toolkit/ (visited on July 27, 2021).

[WWW17] Rocket Science: Does input lag matter? A RL experiment. (Aug. 28, 2020). URL:
https://youtu.be/yLcukmRfVt8 (visited on Oct. 31, 2021).

[WWW18] Rocket Science: How Much Faster Does A SSL Shoot? (feat. SunlessKhan, FreaKii,
Justuszzz). (June 5, 2021). URL: https://youtu.be/qKFoKD_Xk6I?t=99
(visited on Nov. 8, 2021).

[WWW19] Seth Schneider (NVIDIA): Introducing NVIDIA Reflex: Optimize and Measure
Latency in Competitive Games. (Sept. 1, 2020). URL: https://www.nvidia.
com/en-us/geforce/news/reflex-low-latency-platform/#nvidia-reflex-
latency-analyzer (visited on Apr. 27, 2021).

[WWW20] Alps Alpine: Alps Alpine’s Stick Controllers (ThumbPointer™). (May 2020). URL:
https://tech.alpsalpine.com/e/products/faq/multi/thumbpointer.html
(visited on Nov. 1, 2021).

[WWW21] Daniel O’Keeffe, Dimitris Katsaounis, and Yannick Khong (rtings.com): Acer
GN246HL Bbid Monitor Review. (May 28, 2018). URL: https://www.rtings.
com/monitor/reviews/acer/gn246hl-bbid#page-test-results (visited on
Sept. 18, 2021).

92 Bibliography

https://www.ign.com/articles/2017/08/23/why-rocket-league-might-be-the-perfect-mainstream-esport
https://www.ign.com/articles/2017/08/23/why-rocket-league-might-be-the-perfect-mainstream-esport
https://www.forbes.com/sites/maxthielmeyer/2019/01/19/rocket-league-is-poised-to-become-the-next-major-esport-heres-why/
https://www.forbes.com/sites/maxthielmeyer/2019/01/19/rocket-league-is-poised-to-become-the-next-major-esport-heres-why/
https://www.forbes.com/sites/maxthielmeyer/2019/01/19/rocket-league-is-poised-to-become-the-next-major-esport-heres-why/
https://esportsobserver.com/rocket-league-scholastic-esports/
https://esportsobserver.com/rocket-league-scholastic-esports/
https://www.youtube.com/playlist?list=PLfOoCUS0PSkXVGjhB63KMDTOT5sJ0vWy8
https://www.youtube.com/playlist?list=PLfOoCUS0PSkXVGjhB63KMDTOT5sJ0vWy8
https://youtu.be/x0wcJM4FtXQ
https://blurbusters.com/gsync/preview2/
https://inputlag.science/controller/methodology
https://inputlag.science/controller/methodology
https://www.nvidia.com/en-us/geforce/news/nvidia-reviewer-toolkit/
https://www.nvidia.com/en-us/geforce/news/nvidia-reviewer-toolkit/
https://youtu.be/yLcukmRfVt8
https://youtu.be/qKFoKD_Xk6I?t=99
https://www.nvidia.com/en-us/geforce/news/reflex-low-latency-platform/#nvidia-reflex-latency-analyzer
https://www.nvidia.com/en-us/geforce/news/reflex-low-latency-platform/#nvidia-reflex-latency-analyzer
https://www.nvidia.com/en-us/geforce/news/reflex-low-latency-platform/#nvidia-reflex-latency-analyzer
https://tech.alpsalpine.com/e/products/faq/multi/thumbpointer.html
https://www.rtings.com/monitor/reviews/acer/gn246hl-bbid#page-test-results
https://www.rtings.com/monitor/reviews/acer/gn246hl-bbid#page-test-results

[WWW22] Kaldaien: A Brief History of Swapchain Time (Why High Mouse Polling Rates Will
Kill Framerate). (Dec. 6, 2018). URL: https://steamcommunity.com/groups/
SpecialK_Mods/discussions/0/1745605598705601598/ (visited on Nov. 1,
2021).

[WWW23] Matthew Heironimus: Arduino Joystick Library. (Aug. 20, 2020). URL: https:
//github.com/MHeironimus/ArduinoJoystickLibrary (visited on Sept. 26,
2021).

[WWW24] Rocket Science: RL input lag retested 1.44 – Rocket Science #15. (Apr. 30, 2018).
URL: https://youtu.be/-lFXLKv3DhM (visited on Sept. 18, 2021).

[WWW25] OfficialHalfwayDead: ControllerMonitorInfo. (Apr. 21, 2021). URL: https :
//github.com/OfficialHalfwayDead/ControllerMonitorInfo (visited on
Sept. 27, 2021).

[WWW26] rtings.com: #8 - New Input Lag and Response Time Tool. (Sept. 21, 2017). URL:
https://www.rtings.com/company/input-lag-tool (visited on Sept. 28,
2021).

[WWW27] Leo Bodnar Electronics: Video Signal Input Lag Tester. (2014). URL: https:
//www.leobodnar.com/shop/?main_page=product_info&products_id=212
(visited on Sept. 28, 2021).

[WWW28] Hardware Unboxed: Massive Monitor Testing Overhaul, New Benchmarks, More
Charts, Better Data. (Aug. 6, 2019). URL: https://www.youtube.com/watch?
v=081ccrxYwDo (visited on Sept. 28, 2021).

[WWW29] TFTCentral: Input Lag Testing. (Dec. 14, 2011). URL: https://tftcentral.co.
uk/articles/input_lag (visited on Sept. 28, 2021).

[WWW30] ocornut: Dear ImGui. (July 20, 2014). URL: https://github.com/ocornut/
imgui (visited on Sept. 30, 2021).

[WWW31] tarehart, digli, Noodleguitar, et al.: Useful Game Values. (Sept. 26, 2021). URL:
https://github.com/RLBot/RLBot/wiki/Useful-Game-Values (visited on
Oct. 4, 2021).

[WWW32] u/Psyonix_Devin (Psyonix): Season 14 Rank Distribution. (Oct. 13, 2020). URL:
https://www.reddit.com/r/RocketLeague/comments/jaio07/season_14_
rank_distribution/ (visited on Nov. 7, 2021).

Games

[G1] Psyonix: Rocket League. Game [PC, PS4, PS5, Xbox One, Xbox Series X/S,
Nintendo Switch]. San Diego, CA, USA: Psyonix (Epic Games since 2019),
July 7, 2015. Used version: 1.78, from Aug. 28, 2020.

Games 93

https://steamcommunity.com/groups/SpecialK_Mods/discussions/0/1745605598705601598/
https://steamcommunity.com/groups/SpecialK_Mods/discussions/0/1745605598705601598/
https://github.com/MHeironimus/ArduinoJoystickLibrary
https://github.com/MHeironimus/ArduinoJoystickLibrary
https://youtu.be/-lFXLKv3DhM
https://github.com/OfficialHalfwayDead/ControllerMonitorInfo
https://github.com/OfficialHalfwayDead/ControllerMonitorInfo
https://www.rtings.com/company/input-lag-tool
https://www.leobodnar.com/shop/?main_page=product_info&products_id=212
https://www.leobodnar.com/shop/?main_page=product_info&products_id=212
https://www.youtube.com/watch?v=081ccrxYwDo
https://www.youtube.com/watch?v=081ccrxYwDo
https://tftcentral.co.uk/articles/input_lag
https://tftcentral.co.uk/articles/input_lag
https://github.com/ocornut/imgui
https://github.com/ocornut/imgui
https://github.com/RLBot/RLBot/wiki/Useful-Game-Values
https://www.reddit.com/r/RocketLeague/comments/jaio07/season_14_rank_distribution/
https://www.reddit.com/r/RocketLeague/comments/jaio07/season_14_rank_distribution/

[G2] EA Vancouver and EA Romania: FIFA 21. Game [PC, PS4, PS5, Xbox One,
Xbox Series X/S, Nintendo Switch, Stadia]. Redwood City, CA, USA: EA Sports,
Oct. 9, 2020.

[G3] Konami Digital Entertainment: eFootball PES 2021. Game [PC, PS4, Xbox One].
Tokyo, Japan: Konami Digital Entertainment, Sept. 15, 2020.

[G4] id Software: Quake. Game [MS-DOS, Windows, Mac OS, Linux, AmigaOS, RISC
OS, Sega Saturn, Nintendo 64]. New York, NY, USA: GT Interactive, June 22,
1996.

94 Bibliography

Abbreviations

ADC analog-to-digital converter 30, 42

ANOVA analysis of variance 54, 56, 57, 62, 73, 75

BM BakkesMod 20, 24

CPU central processing unit 38, 39

CRT cathode-ray tube 15, 33, 34, 46

EDID Extended Display Identification Data 45

FIFO first in, first out 49

FOV field of view 1, 73, 79

fps frames per second 37, 42, 49

G–G Greenhouse–Geisser 57, 62

GLM General Linear Model 56, 62, 75

GPU graphics processing unit 38, 39

HCI human–computer interaction 8

H–F Huynh–Feldt 57

JND just-noticeable difference v, 13, 14, 64, 65, 72, 74

JSON JavaScript Object Notation 51

LCD liquid crystal display 34–36

LED light-emitting diode 12, 14, 47

MMR matchmaking rating 54, 99

pctl. percentile 54, 63, 64

RGB red, green, and blue 33, 34

RL Rocket League 1, 5, 7, 10, 19–22, 25, 38, 39, 43, 54, 66–68, 71, 72

95

SPSS IBM SPSS Statistics 27 56, 62

SSL Secure Sockets Layer 51

TEO The Esports Observer 5

USB Universal Serial Bus 31–33, 37

VSync vertical synchronization 34, 36, 40, 41, 44, 47, 48, 53, 77

96 Abbreviations

Glossary

BakkesMod User created Rocket League mod with an open API to allow developers
to create their own mods for the game. vii, 20, 24, 48, 51

first order control The input (mouse/analog stick) directly determines the velocity
(linear/angular) of the controlled object. 9, 10, 14, 17, 18, 21

isotonic sensing the angle of deflection, as opposed to isometric (sensing force)
[82, pp. 106–107]. 30

latency Local system end-to-end delay/motion-to-photon latency (see section 1.2).
v, 1–3, 6–25, 27, 28, 30–49, 53, 55–80, 99–101, 103

mechanic Game specific action that players can perform, e. g. aiming, shooting, or
jumping (more info: section 1.3). 2, 7, 20, 67, 68, 80

netcode Refers to the networking code in games. How the networking code is
designed to work with multiple players connecting, and how it deals with
network latency, jitter and packet loss. 7

Rocket League Car soccer video game, published 2015 by Psyonix, used in the
study (see section 1.1). v, vii, 1–3, 5–7, 10, 11, 19–22, 25, 27, 28, 35, 37–39,
41, 43–46, 49, 54, 66–68, 70–72, 74, 77, 79, 99

second order control The input (mouse/analog stick) directly determines the
acceleration (linear/angular) of the controlled object. 9, 10, 14, 17, 18, 21, 72

zero order control The input (mouse/analog stick/touch) directly determines the
state (location/orientation) of the controlled object. 9, 10, 12, 17, 19–21

97

List of Figures

1.1 Rocket League screenshot showing a car shooting the ball. 6

3.1 Dialog displayed to the participants after every set of shots. 24

4.1 Measurement setup showing the Arduino with a breadboard and display.
The controller is connected to trigger analog input. The monitor shows
the custom black and white map. The cardboard box in front of the
monitor can be seen on the right. It houses the photodiodes. 42

4.2 Graphic showing the size of the goal and the distance at which the
score is 0. 50

5.1 Histogram of the MMR of the participants compared to the general
playerbase of the game. The MMR serves as a good approximation of
the skill of the participants. 54

5.2 Hours of experience by skill group. 55

5.3 Histogram of the estimated average baseline end-to-end latency of the
participants. 55

5.4 Average score lowers with additional latency. Error bars denote 95 %
confidence interval. 58

5.5 Average shot velocity is more affected by added latency as the player
skill increases. Error bars denote 95 % confidence interval. 59

5.6 Player skill has a different effect on the average score of each shot.
Error bars denote 95 % confidence interval. 59

5.7 The two lowest skill groups miss the ball significantly more often with
low graphics settings. There is no significant difference for the groups
of higher skill. Error bars denote 95 % confidence interval. 60

5.8 The normalized score demonstrates how the shots are affected differ-
ently by additional latency. Error bars denote 95 % confidence interval;
faded for visibility. 61

5.9 Average perceived latency increases the most with added latency for
highly skilled players. Error bars denote 95 % confidence interval. . . . 63

99

5.10 Comparing the rate of answers that was higher than the answers given
at 0 ms. 50 % expected if answers are random. Highly skilled players
are able to recognize added latency much more accurately. Error bars
denote 95 % confidence interval. 64

6.1 Density plots of the score of individual shots show that there is large
variance. Neighboring skill groups reveal a similar offset to additional
latency of 50 ms. 68

6.2 The first shot in every set of five shots has lower performance. 75
6.3 The quadratic model fits the data equally well as the one using the

distance from the mean added_lat . The third graph displays what the
alternative model predicts if the participants had ample time to adapt
to the latency. Shading denotes 95 % confidence interval. 76

100 List of Figures

List of Tables

5.1 Effect size of added_lat for each response variable. 58
5.2 Reduction of the average shot velocity when with added latency, split

by the skill groups. Results given are the Bonferroni corrected p-values,
the effect size as Cohen’s d, and the percentage reduction compared to
no added latency. 58

5.3 Effect size (Cohen’s d) varies greatly between shots, comparing 50 to 0 ms
of added latency for each response variable. 60

5.4 Average perceived latency answers (scale 0–6) with added latency, split
by skill group. 63

6.1 Average perceived latency answers with added latency, split by skill
group. 72

6.2 Quadratic model factors for perceived latency. 74

101

List of Listings

4.1 Calculation of the average added latency caused by waiting for the next
physics tick (Python). 39

4.2 How artificial latency was added in a function that manipulates the
inputs before each physics step (C++). 49

103

Experiment setup Appendix A
A.1 Detailed shot description

The five shots in the experiment are supposed to represent different setup, difficulty,
and execution.

The first shot is the easiest. The ball rolls with moderately slow speed and a light
bounce in front of the goal. The player is facing away from the goal and has to turn
60–120° in order to put the ball on target. Participants of all ranks are able to score
this goal. It requires minimal estimation of the car’s turning behavior, and there is
lots of time for corrections. Precise placement of the shot is easily possible. Shot
power requires a well-timed flip.

The second shot is more difficult in one way: estimation. The ball starts out high
in the corner and falls with sideways speed in front of the net. Hitting the ball at
the moment it bounces in front of the net, is easy as long as the player is capable of
estimating when the bounce will approximately occur. This requirement is tighter
for a precisely placed shot. Higher shot power is easier to achieve on the second
shot, as the player is set up to shoot after the bounce. This is known as a power shot
because it will reliably produce a powerful outcome. It is expected that higher rated
players will get to the ball before it even bounces. This requires a high jump off the
ground.

The third shot requires a lot more control from the player. The player starts close to
the goal, facing away from it. The ball is in front of them, rolling away from the goal
with moderately slow speed. The player needs to accelerate with boost in order to
go all the way around the ball to shoot on target. There are three possible strategies.
The first one requires great timing and involves executing the turn to perfection
to score as early as possible. The second option involves driving deliberately far
beyond the ball, and taking the time to turn. That allows the car to be faster for a
powerful shot. The last option involves two touches. The first touch is deliberately
soft in order to set up for the follow-up shot. I consider the two touch strategy to be
the easiest and most consistent.

105

The fourth shot has the ball crossing the field diagonally flying past the goal. This
is called a redirect shot, as the ball will miss the goal without a touch, but all that
is needed is a bounce off the car to redirect the trajectory into the goal. This shot
requires good judgement of the ball’s speed. The high velocity at which the ball is
flying from the start, means small errors result in misses. This makes it the most
difficult shot for lower skilled players. They do not have the option to take the
shot slowly. Due to the starting velocity of the ball, the touches will generally be
faster than on the other shots. However, there is still significant room for different
outcomes. While a poorly touched ball can go 80 km

h , a perfectly struck shot will go
160 km

h .

The fifth shot is intended to be an aerial shot. The ball is deliberately off to the left
side, while the player is central before the goal. The ball gets launched high in the
air. The player is expected to try and fly around the ball in a slightly curving path to
strike it towards the center of the goal. In order to ensure that lower ranked players
can complete the shot, it is possible wait for the ball to drop to the ground. This still
requires driving around the ball, but it is significantly easier than the option in the
air.

106 Appendix A Experiment setup Appendix

	Changelog
	Titlepage
	Abstract
	Acknowledgement
	Contents
	Introduction
	Thesis Structure

	1 Foundations
	1.1 Rocket League
	1.2 Latency definition
	1.3 Game mechanics
	1.4 Latency in gaming
	1.5 Control order

	2 Related work
	2.1 Measuring latency
	2.2 Perception of latency
	2.3 Performance and behavior changes due to latency

	3 Experiment methodology
	3.1 Research questions
	3.2 Why was Rocket League chosen?
	3.3 Participants
	3.4 Experiment setup

	4 Implementation details
	4.1 Measuring and estimating latency in Rocket League
	4.1.1 Understanding the sources of latency
	4.1.1.1 Input device
	4.1.1.2 Display
	4.1.1.3 Computer

	4.1.2 Measuring Rocket League latency
	4.1.3 Estimating game latency
	4.1.4 Estimating input device latency
	4.1.5 Estimating display input latency
	4.1.6 Total latency estimation

	4.2 Experiment implementation
	4.2.1 Adding artificial latency
	4.2.2 Score evaluation
	4.2.3 Miscellaneous

	5 Results
	5.1 Participants
	5.2 Effects on performance
	5.3 Effects on perception
	5.3.1 just-noticeable difference

	5.4 Observational results

	6 Discussion
	6.1 Participants
	6.2 Player performance
	6.3 Latency perception
	6.4 Observational results
	6.5 Recommendations

	7 Conclusion and future work
	Bibliography
	Web pages
	Games

	Abbreviations
	Glossary
	List of Figures
	List of Tables
	List of Listings
	A Experiment setup Appendix
	A.1 Detailed shot description

